scholarly journals The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects

2011 ◽  
Vol 41 (5) ◽  
pp. 218 ◽  
Author(s):  
Shin-Young Park ◽  
Kyoung-Hwa Kim ◽  
Ki-Tae Koo ◽  
Kang-Woon Lee ◽  
Yong-Moo Lee ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1028-1029
Author(s):  
Robert Palomino ◽  
Ke-Bin Low ◽  
Chunxin Ji ◽  
Ivan Petrovic ◽  
Florian Waltz ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Jin Xi Lim ◽  
Min He ◽  
Alphonsus Khin Sze Chong

BACKGROUND: An increasing number of bone graft materials are commercially available and vary in their composition, mechanism of action, costs, and indications. OBJECTIVE: A commercially available PLGA scaffold produced using 3D printing technology has been used to promote the preservation of the alveolar socket after tooth extraction. We examined its influence on bone regeneration in long bones of New Zealand White rabbits. METHODS: 5.0-mm-diameter circular defects were created on the tibia bones of eight rabbits. Two groups were studied: (1) control group, in which the bone defects were left empty; (2) scaffold group, in which the PLGA scaffolds were implanted into the bone defect. Radiography was performed every two weeks postoperatively. After sacrifice, bone specimens were isolated and examined by micro-computed tomography and histology. RESULTS: Scaffolds were not degraded by eight weeks after surgery. Micro-computed tomography and histology showed that in the region of bone defects that was occupied by scaffolds, bone regeneration was compromised and the total bone volume/total volume ratio (BV/TV) was significantly lower. CONCLUSION: The implantation of this scaffold impedes bone regeneration in a non-critical bone defect. Implantation of bone scaffolds, if unnecessary, lead to a slower rate of fracture healing.


2018 ◽  
Vol 32 (suppl 1) ◽  
Author(s):  
Manoel Damião de Sousa-Neto ◽  
Yara Correa Silva-Sousa ◽  
Jardel Francisco Mazzi-Chaves ◽  
Kleber Kildare Teodoro Carvalho ◽  
Ana Flávia Simões Barbosa ◽  
...  

2007 ◽  
Vol 342-343 ◽  
pp. 357-360
Author(s):  
Kun Young Song ◽  
Yoo Jung Um ◽  
Ui Won Jung ◽  
Yong Keun Lee ◽  
Seong Ho Choi ◽  
...  

The purpose of this study was to evaluate the effects of collagen membrane coated with PLGA on bone regeneration in rat calvarial defect. Five groups of 10 animals each received either collagen membrane coated with 0.5%, 1%, 3% concentration of PLGA, collagen membrane only or surgical control. Each group of animals was healed into 2 healing periods of 2(5 animals) and 8(5 animals)weeks and histologic and histomorphometric analysis were done. The results of the following study revealed that surgical implantation of collagen membranes coated with PLGA enhanced local bone formation at both 2 and 8 weeks independent of different PLGA concentrations. In conclusion, collagen membrane coated with PLGA shows a significant bone formation behavior irrespective of their concentration.


Sign in / Sign up

Export Citation Format

Share Document