scholarly journals Thermal Fatigue Reliability Estimation for Underfill Assmbly Using SDSS and FEA.

2000 ◽  
Vol 3 (7) ◽  
pp. 585-591
Author(s):  
Yasuhisa KAGA ◽  
Qiang YU ◽  
Masaki SHIRATORI
2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983684 ◽  
Author(s):  
Leilei Cao ◽  
Lulu Cao ◽  
Lei Guo ◽  
Kui Liu ◽  
Xin Ding

It is difficult to have enough samples to implement the full-scale life test on the loader drive axle due to high cost. But the extreme small sample size can hardly meet the statistical requirements of the traditional reliability analysis methods. In this work, the method of combining virtual sample expanding with Bootstrap is proposed to evaluate the fatigue reliability of the loader drive axle with extreme small sample. First, the sample size is expanded by virtual augmentation method to meet the requirement of Bootstrap method. Then, a modified Bootstrap method is used to evaluate the fatigue reliability of the expanded sample. Finally, the feasibility and reliability of the method are verified by comparing the results with the semi-empirical estimation method. Moreover, from the practical perspective, the promising result from this study indicates that the proposed method is more efficient than the semi-empirical method. The proposed method provides a new way for the reliability evaluation of costly and complex structures.


Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 1967-1978
Author(s):  
Xue-Qin Li ◽  
Guang-Chen Bai ◽  
Lu-Kai Song ◽  
Jie Wen

2012 ◽  
Vol 249-250 ◽  
pp. 628-631
Author(s):  
Xin Li Bai ◽  
Peng Xu ◽  
Jiang Yan Li

The expression of reliability estimation method for fatigue life of machine parts was derived, and two kinds of stress cycles (reversed cycle and un-symmetric reversed cycle) were considered. An iteration method is presented and the corresponding computer program named STRENGTH-2 is developed for estimating reliable life of machine parts. The engineering application results show that the calculated results are close to experimental results. The proposed method can be convenient to carry out the fatigue reliability design for machine parts under the action of uni-axial and multi-axial loadings, and promote the popularization and application of existing anti-fatigue design method. It has the high value of engineering application.


Author(s):  
Qiang Yu ◽  
Masaki Shiratori ◽  
Kimimasa Murayama ◽  
Kazuhiro Igarashi ◽  
Takashi Nakanishi

In recent years many electric equipments have come to be used for cars. Solder joints in electric device utilizing car are exposed to harder environment and required higher reliability than that in electric household appliances. Because of this reason, thermal fatigue reliability of solder joints has become one of the most important issues in car electronics. Generally thermal fatigue reliability is estimated by thermal cycle examination, but it needs long time. Estimation by FEM enables it to improve reliability and to reduce time. Analysis of solder life generally can predict only initial crack. But it is important to predict crack propagation and solder joints break down, considering that a function of solder joints is electric connection. In this study, the authors proposed a method to predict break down life by analytical approach.


Sign in / Sign up

Export Citation Format

Share Document