scholarly journals Unveiling the molecular mechanisms of drought stress tolerance in rice (Oryza sativa L.) using computational approaches

2018 ◽  
Vol 99 (4) ◽  
pp. 385-400
Author(s):  
Zahra Zinati ◽  
Vahid Barati
2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Asma Asma ◽  
Iqbal Hussain ◽  
Muhammad Yasin Ashraf ◽  
Muhammad Arslan Ashraf ◽  
Rizwan Rasheed ◽  
...  

2019 ◽  
Vol 29 (1) ◽  
pp. 127-131 ◽  
Author(s):  
Omar H Obaid ◽  
SK Reddy

Abstract not available Plant Tissue Cult. & Biotech. 29(1): 127-131, 2019 (June)


2021 ◽  
Vol 50 (2) ◽  
pp. 335-342
Author(s):  
Ibrahim Selçuk Kuru ◽  
ÇIğdem Işikalan ◽  
Filiz Akbaş

Physiological and biochemical responses of six different rice (Oryza sativa L.) varieties cultivated in Turkey and two local varieties, namely Karacadağ and Hazro to the drought were investigated. After 12 days of drought treatment, the highest and lowest OP values were observed in Osmancık-97 (-1.14 MPa) and Karacadağ (-1.55 MPa) varieties, respectively. In the same treatment, it was observed that the amount of proline increased 19.9-fold in Karacadağ and 3.6-fold in Osmancık-97. When the data obtained from all parameters were correlated with drought stress tolerance, Osmancık-97 and Beşer varieties were considered to be tolerant, while Gönen and Karacadağ varieties are considered to be more sensitive. Bangladesh J. Bot. 50(2): 335-342, 2021 (June)


2020 ◽  
Author(s):  
Kai Liu ◽  
Mingjuan Li ◽  
Bin Zhang ◽  
Yanchun Cui ◽  
Xuming Yin ◽  
...  

Abstract BackgroundGrain yield is a polygenic trait influenced by environmental and genetic interactions at all growth stages of the cereal plant. However, the molecular mechanisms responsible for coordinating the trade-off or cross-talk between these traits remain elusive.ResultsWe characterized the hitherto unknown function of four STRESS_tolerance and GRAIN_LENGTH (OsSGL) Poaceae ortholog genes, all encoding DUF1645 domain-containing proteins, in simultaneous regulation of grain length, grain weight, and drought stress-tolerance in rice. In normal growth conditions, the four ortholog genes were mainly expressed in the developing roots and panicles of the corresponding species. Over-expressing or heterologous high-level expressing Poaceae OsSGL ortholog genes conferred remarkably increased grain length, weight, and seed setting percentage, as well as significantly improved drought-stress tolerance in transgenic rice. Microscopical analysis also showed that the transgene expression promoted cell division and development. RNA-seq and qRT-PCR analyses revealed 73.8% (18,711) overlapped DEGs in all transgenic plants. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in drought stress-response belonged to hormone (especially auxin and cytokinin) pathways, and signaling processes were apparently affected in the young panicles. ConclusionTogether, these results suggest the four OsSGL orthologs perform a conserved function in regulating stress-tolerance and cell growth by acting via a hormone biosynthesis and signaling pathway. It may also induce a strategy for tailor-made crop yield improvement.


Author(s):  
Diksha Sati ◽  
Veni Pande ◽  
Satish Chandra Pandey ◽  
Mukesh Samant

Increased severity of droughts, due to anthropogenic activities and global warming has imposed a severe threat on agricultural productivity ever before. This has further advanced the need for some eco-friendly approaches to ensure global food security. In this regard, application of plant growth-promoting rhizobacteria (PGPR) can be beneficial. PGPR through various mechanisms viz. osmotic adjustments, increased antioxidant, phytohormone production, regulating stomatal conductivity, increased nutrient uptake, releasing Volatile organic compounds (VOCs), and Exo-polysaccharide (EPS) production, etc not only ensures the plant’s survival during drought but also augment its growth. This review, extensively discusses the various mechanisms of PGPR in drought stress tolerance. We have also summarized the recent molecular and omics-based approaches for elucidating the role of drought responsive genes. The manuscript presents an in-depth mechanistic approach to combat the drought stress and also deals with designing PGPR based bioinoculants. Lastly, we present a possible sequence of steps for increasing the success rate of bioinoculants.


2020 ◽  
Vol 21 (1) ◽  
pp. 333 ◽  
Author(s):  
Renata Silva ◽  
Luanna Filgueiras ◽  
Bruna Santos ◽  
Mariana Coelho ◽  
Maria Silva ◽  
...  

Background: Inoculation with Gluconacetobacter diazotrophicus has shown to influence root development in red rice plants, and more recently, the induced systemic tolerance (IST) response to drought was also demonstrated. The goal of this study was to evaluate the inoculation effect of G. diazotrophicus strain Pal5 on the amelioration of drought stress and root development in red rice (Oryza sativa L.). Methods: The experimental treatments consist of red rice plants inoculated with and without strain Pal5 in presence and absence of water restriction. Physiological, biochemical, and molecular analyses of plant roots were carried out, along with measurements of growth and biochemical components. Results: The plants showed a positive response to the bacterial inoculation, with root growth promotion and induction of tolerance to drought. An increase in the root area and higher levels of osmoprotectant solutes were observed in roots. Bacterial inoculation increased the drought tolerance and positively regulated certain root development genes against the water deficit in plants. Conclusion: G. diazotrophicus Pal5 strain inoculation favored red rice plants by promoting various root growth and developmental mechanisms against drought stress, enabling root development and improving biochemical composition.


Sign in / Sign up

Export Citation Format

Share Document