scholarly journals Preconception immunization can modulate intracellular Th2 cytokine profile in offspring: in vivo influence of interleukin 10 and B/T cell collaboration

2018 ◽  
Vol 43 (4) ◽  
pp. 378-388 ◽  
Author(s):  
Marília Garcia de Oliveira ◽  
Aline Aparecida de Lima Lira ◽  
Fábio da Ressureição Sgnotto ◽  
Amanda Harumi Sabô Inoue ◽  
Alberto José da Silva Duarte ◽  
...  
2000 ◽  
Vol 164 (6) ◽  
pp. 3047-3055 ◽  
Author(s):  
Dragana Jankovic ◽  
Marika C. Kullberg ◽  
Nancy Noben-Trauth ◽  
Patricia Caspar ◽  
William E. Paul ◽  
...  

1994 ◽  
Vol 179 (2) ◽  
pp. 493-502 ◽  
Author(s):  
R Bacchetta ◽  
M Bigler ◽  
J L Touraine ◽  
R Parkman ◽  
P A Tovo ◽  
...  

Transplantation of HLA mismatched hematopoietic stem cells in patients with severe combined immunodeficiency (SCID) can result in a selective engraftment of T cells of donor origin with complete immunologic reconstitution and in vivo tolerance. The latter may occur in the absence of clonal deletion of donor T lymphocytes able to recognize the host HLA antigens. The activity of these host-reactive T cells is suppressed in vivo, since no graft-vs. -host disease is observed in these human chimeras. Here it is shown that the CD4+ host-reactive T cell clones isolated from a SCID patient transplanted with fetal liver stem cells produce unusually high quantities of interleukin 10 (IL-10) and very low amounts of IL-2 after antigen-specific stimulation in vitro. The specific proliferative responses of the host-reactive T cell clones were considerably enhanced in the presence of neutralizing concentrations of an anti-IL-10 monoclonal antibody, suggesting that high levels of endogenous IL-10 suppress the activity of these cells. These in vitro data correlate with observations made in vivo. Semi-quantitative polymerase chain reaction analysis carried out on freshly isolated peripheral blood mononuclear cells (PBMC) of the patient indicated that the levels of IL-10 messenger RNA (mRNA) expression were strongly enhanced, whereas IL-2 mRNA expression was much lower than that in PBMC of healthy donors. In vivo IL-10 mRNA expression was not only high in the T cells, but also in the non-T cell fraction, indicating that host cells also contributed to the high levels of IL-10 in vivo. Patient-derived monocytes were found to be major IL-10 producers. Although no circulating IL-10 could be detected, freshly isolated monocytes of the patient showed a reduced expression of class II HLA antigens. However, their capacity to stimulate T cells of normal donors in primary mixed lymphocyte cultures was within the normal range. Interestingly, similar high in vivo IL-10 mRNA expressions in the T and non-T cell compartment were also observed in three SCID patients transplanted with fetal liver stem cells and in four SCID patients transplanted with T cell-depleted haploidentical bone marrow stem cells. Taken together, these data indicate that high endogenous IL-10 production is a general phenomenon in SCID patients in whom allogenic stem cell transplantation results in immunologic reconstitution and induction of tolerance. Both donor T cells and host accessory cells contribute to these high levels of IL-10, which would suppress the activity of host-reactive T cell in vivo.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4513-4521 ◽  
Author(s):  
Dieter Körholz ◽  
Ursula Banning ◽  
Halvard Bönig ◽  
Markus Grewe ◽  
Marion Schneider ◽  
...  

Abstract Interleukin-15 (IL-15) is a potent T-cell stimulating factor, which has recently been used for pre-clinical in vivo immunotherapy. Here, the IL-15 effect on CD3-stimulated peripheral human T cells was investigated. IL-15 induced a significant T-cell proliferation and upregulated CD25 expression. IL-15 significantly enhanced T-cell production of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-10. Between 10- and 100-fold greater concentrations of IL-15 were necessary to reach a biological effect equivalent to that of IL-2. Blockade of IL-2 binding to the high-affinity IL-2 receptor did not affect the IL-15 effects, suggesting that IL-15 did not act by inducing endogenous IL-2. Exogenously administered IL-10 significantly reduced the IL-15 and IL-2–mediated IFN-γ and TNF-α production, whereas T-cell proliferation and CD25 expression were not affected. The inhibitory effects of exogenously administered IL-10 on T-cell cytokine production appeared indirect, and are likely secondary to decreased IL-12 production by accessory cells. Inhibition of endogenous IL-10 binding to the IL-10 receptor significantly increased IFN-γ and TNF-α release from T cells. These data suggest that endogenous IL-10 can regulate activated T-cell production of IFN-γ and TNF-α via a paracrine negative feedback loop. The observations of this study could be of relevance for the therapeutic use of IL-15 in vivo.


2000 ◽  
Vol 68 (5) ◽  
pp. 2837-2844 ◽  
Author(s):  
Eric N. Villegas ◽  
Ulrike Wille ◽  
Linden Craig ◽  
Peter S. Linsley ◽  
Donna M. Rennick ◽  
...  

ABSTRACT Interleukin-10 (IL-10) is associated with inhibition of cell-mediated immunity and downregulation of the expression of costimulatory molecules required for T-cell activation. When IL-10-deficient (IL-10KO) mice are infected with Toxoplasma gondii, they succumb to a T-cell-mediated shock-like reaction characterized by the overproduction of IL-12 and gamma interferon (IFN-γ) associated with widespread necrosis of the liver. Since costimulation is critical for T-cell activation, we investigated the role of the CD28-B7 and CD40-CD40 ligand (CD40L) interactions in this infection-induced immunopathology. Our studies show that infection of mice with T. gondii resulted in increased expression of B7 and CD40 that was similar in wild-type and IL-10KO mice. In vivo blockade of the CD28-B7 or CD40-CD40L interactions following infection of IL-10KO mice with T. gondii did not affect serum levels of IFN-γ or IL-12, nor did it prevent death in these mice. However, when both pathways were blocked, the IL-10KO mice survived the acute phase of infection and had reduced serum levels of IFN-γ and alanine transaminase as well as decreased expression of inducible nitric oxide synthase in the liver and spleen. Analysis of parasite-specific recall responses from infected IL-10KO mice revealed that blockade of the CD40-CD40L interaction had minimal effects on cytokine production, whereas blockade of the CD28-B7 interaction resulted in decreased production of IFN-γ but not IL-12. Further reduction of IFN-γ production was observed when both costimulatory pathways were blocked. Together, these results demonstrate that the CD28-B7 and CD40-CD40L interactions are involved in the development of infection-induced immunopathology in the absence of IL-10.


2000 ◽  
Vol 12 (9) ◽  
pp. 1337-1345 ◽  
Author(s):  
Quirijn Vos ◽  
Clifford M. Snapper ◽  
James J. Mond
Keyword(s):  
T Cell ◽  

1999 ◽  
Vol 67 (7) ◽  
pp. S251
Author(s):  
Y. Furukawa ◽  
G. Becker ◽  
J. L. Stinn ◽  
P. Libby ◽  
R. N. Mitchell

2021 ◽  
Author(s):  
Matthew Wade ◽  
Hugues Fausther-Bovendo ◽  
Marc-Antoine De La Vega ◽  
Gary Kobinger

Abstract Available therapeutics for autoimmune disorders focused on mitigating symptoms, rather than treating the cause of the disorder. A novel approach using adeno-associated virus (AAV) could restore tolerance to the autoimmune targets and provide a permanent treatment for autoimmune diseases. Here, we evaluated the ability of collagen II T-cell epitopes packaged in adeno-associated virus serotype 8 (AAV-8) vectors to reduce pathogenic cellular and humoral responses against collagen and to mitigate the disease in the collagen-induced arthritis mouse model. The cytokines and immune cells involved in the immune suppression were also investigated. Mice treated with AAV-8 containing collagen II T-cell epitopes demonstrated a significant reduction in the arthritis symptoms, pathogenic collagen specific antibody and T cell responses. The AAV-8 mediated immune suppression was mediated by increased interleukin-10 expression and regulatory T cells expansion. Altogether, this study strengthens the notion that AAV vectors are promising candidates for the treatment of autoimmune diseases.


Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3249-3256 ◽  
Author(s):  
Laurence Weiss ◽  
Vladimira Donkova-Petrini ◽  
Laure Caccavelli ◽  
Michèle Balbo ◽  
Cédric Carbonneil ◽  
...  

Abstract The present study demonstrates that CD4+CD25+ T cells, expanded in peripheral blood of HIV-infected patients receiving highly active antiretroviral therapy (HAART), exhibit phenotypic, molecular, and functional characteristics of regulatory T cells. The majority of peripheral CD4+CD25+ T cells from HIV-infected patients expressed a memory phenotype. They were found to constitutively express transcription factor forkhead box P3 (Foxp3) messengers. CD4+CD25+ T cells weakly proliferated to immobilized anti-CD3 monoclonal antibody (mAb) and addition of soluble anti-CD28 mAb significantly increased proliferation. In contrast to CD4+CD25– T cells, CD4+CD25+ T cells from HIV-infected patients did not proliferate in response to recall antigens and to p24 protein. The proliferative capacity of CD4 T cells to tuberculin, cytomegalovirus (CMV), and p24 significantly increased following depletion of CD4+CD25+ T cells. Furthermore, addition of increasing numbers of CD4+CD25+ T cells resulted in a dose-dependent inhibition of CD4+CD25– T-cell proliferation to tuberculin and p24. CD4+CD25+ T cells responded specifically to p24 antigen stimulation by expressing transforming growth factor β (TGF-β) and interleukin 10 (IL-10), thus indicating the presence of p24-specific CD4+ T cells among the CD4+CD25+ T-cell subset. Suppressive activity was not dependent on the secretion of TGF-β or IL-10. Taken together, our results suggest that persistence of HIV antigens might trigger the expansion of CD4+CD25+ regulatory T cells, which might induce a tolerance to HIV in vivo.


Sign in / Sign up

Export Citation Format

Share Document