scholarly journals Design of High Performance and Power Efficient 16-bit Square Root Carry Select Adder using Hybrid PTL/CMOS Logic

2013 ◽  
Vol 69 (10) ◽  
pp. 32-35
Author(s):  
Lakshay Suri ◽  
Devesh Lamba ◽  
Kunwar Kritarth ◽  
Bhavna Ghai ◽  
Geetanjali Sharma
Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2622
Author(s):  
Jurgen Vandendriessche ◽  
Nick Wouters ◽  
Bruno da Silva ◽  
Mimoun Lamrini ◽  
Mohamed Yassin Chkouri ◽  
...  

In recent years, Environmental Sound Recognition (ESR) has become a relevant capability for urban monitoring applications. The techniques for automated sound recognition often rely on machine learning approaches, which have increased in complexity in order to achieve higher accuracy. Nonetheless, such machine learning techniques often have to be deployed on resource and power-constrained embedded devices, which has become a challenge with the adoption of deep learning approaches based on Convolutional Neural Networks (CNNs). Field-Programmable Gate Arrays (FPGAs) are power efficient and highly suitable for computationally intensive algorithms like CNNs. By fully exploiting their parallel nature, they have the potential to accelerate the inference time as compared to other embedded devices. Similarly, dedicated architectures to accelerate Artificial Intelligence (AI) such as Tensor Processing Units (TPUs) promise to deliver high accuracy while achieving high performance. In this work, we evaluate existing tool flows to deploy CNN models on FPGAs as well as on TPU platforms. We propose and adjust several CNN-based sound classifiers to be embedded on such hardware accelerators. The results demonstrate the maturity of the existing tools and how FPGAs can be exploited to outperform TPUs.


Author(s):  
Ms. Mayuri Ingole

Utilization of power is a major aspect in the design of integrated circuits. Since, adders are mostly employed in these circuits, we should design them effectively. Here, we propose an easy and effective method in decreasing the maximum consumption of power. Carry Select Adder is the one which is dependent on the design of two adders. We present a high performance low-power adder that is implemented. Also, here in Carry Select Adder, Binary Excess Code-1is replaced by Ripple Carry Adder. After analyzing the results, we can come to a conclusion that the architecture which is proposed will have better results in terms of consumption of power compared to conventional techniques. 


2016 ◽  
Vol 73 (4) ◽  
pp. 1307-1321 ◽  
Author(s):  
Kihong Lee ◽  
DongWoo Lee ◽  
Sungkil Lee ◽  
Young Ik Eom

Sign in / Sign up

Export Citation Format

Share Document