scholarly journals An Overview of Various Template Matching Methodologies in Image Processing

2016 ◽  
Vol 153 (10) ◽  
pp. 8-14 ◽  
Author(s):  
Paridhi Swaroop ◽  
Neelam Sharma
2011 ◽  
Vol 346 ◽  
pp. 731-737 ◽  
Author(s):  
Jin Feng Yang ◽  
Man Hua Liu ◽  
Hui Zhao ◽  
Wei Tao

This paper presents an efficient method to detect the fastener based on the technologies of image processing and optical detection. As feature descriptor, the Direction Field of fastener image is computed for template matching. This fastener detection method can be used to determine the status of fastener on the corresponding track, i.e., whether the fastener is on the track or missing. Experimental results are presented to show that the proposed method is computation efficiency and is robust for fastener detection in complex environment.


2019 ◽  
Vol 9 (7) ◽  
pp. 1385 ◽  
Author(s):  
Luca Donati ◽  
Eleonora Iotti ◽  
Giulio Mordonini ◽  
Andrea Prati

Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.


2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Amelia Yolanda ◽  
Deddy Prayama ◽  
Aulia Ramadhani

One of the diseases that can be detected through blood tests is Dengue Hemorrhagic Fever (DHF). The number of platelets are one of the guidelines used by doctors diagnosing DHF. Actually, platelets can be calculated manually, but it will be very difficult if the platelets are counted quite a lot. So, we need a technology that can calculate the number of platelets quickly and automatized to get more accurate results.   The automatic systems built by using the template matching method with  image processing include HSL Segmentation with Luminance type and Reverse Color Manipulation. After building the system, the system will automatically look for objects that match the template in the sample image and then give the marking and calculate it.The overall system testing results are the number of platelets which are then classified manually at what degree of DHF.


Detection and monitoring of real-time road signs are becoming today's study in the autonomous car industry. The number of car users in Malaysia risen every year as well as the rate of car crashes. Different types, shapes, and colour of road signs lead the driver to neglect them, and this attitude contributing to a high rate of accidents. The purpose of this paper is to implement image processing using the real-time video Road Sign Detection and Tracking (RSDT) with an autonomous car. The detection of road signs is carried out by using Video and Image Processing technique control in Python by applying deep learning process to detect an object in a video’s motion. The extracted features from the video frame will continue to template matching on recognition processes which are based on the database. The experiment for the fixed distance shows an accuracy of 99.9943% while the experiment with the various distance showed the inversely proportional relation between distances and accuracies. This system was also able to detect and recognize five types of road signs using a convolutional neural network. Lastly, the experimental results proved the system capability to detect and recognize the road sign accurately.


Template matching forms the basis of many image processing algorithms and hence the computer vision algorithms. There are many existing template matching algorithms like Sum of Absolute Difference (SAD), Normalized SAD (NSAD), Correlation methods (CORR), Normalized CORR(NCORR), Sum of Squared Difference (SSD), and Normalized SSD(NSSD). In general, as image requires more memory space for storage and much time for processing. The above said methods involves much computation. In any processing, efficiency constraints include many factors, especially accuracy of the results and speed of processing. An approach to reduce the execution time is always most appreciated. As a result of this, a novel method of partial NCC (PNCC) template matching technique is proposed in this paper. A block window approach is used to reduce the number of operations and hence to speed up the processing. A comparative study between existing NCC algorithm and the proposed partial NCC, PNCC algorithm is done. It is experimented and results proves that the execution time is reduced by 8 - 47 times approximately based on the various template images for different main images in PNCC. The accuracy of the result obtained is 100%. This proposed algorithm works for various types of images. The experiment is repeated for various sizes of templates and different sizes of main image. Further improvement in the speed of execution can be achieved by implementation of the proposed algorithm using parallel processors. It may find its importance in the real time image processing


2018 ◽  
Vol 1 (2) ◽  
pp. 46
Author(s):  
Tri Septianto ◽  
Endang Setyati ◽  
Joan Santoso

A higher level of image processing usually contains some kind of classification or recognition. Digit classification is an important subfield in handwritten recognition. Handwritten digits are characterized by large variations so template matching, in general, is inefficient and low in accuracy. In this paper, we propose the classification of the digit of the year of a relic inscription in the Kingdom of Majapahit using Support Vector Machine (SVM). This method is able to cope with very large feature dimensions and without reducing existing features extraction. While the method used for feature extraction using the Gray-Level Co-Occurrence Matrix (GLCM), special for texture analysis. This experiment is divided into 10 classification class, namely: class 1, 2, 3, 4, 5, 6, 7, 8, 9, and class 0. Each class is tested with 10 data so that the whole data testing are 100 data number year. The use of GLCM and SVM methods have obtained an average of classification results about 77 %.


2013 ◽  
Vol 303-306 ◽  
pp. 632-637
Author(s):  
Xiao Dong Wang ◽  
Hong Zhe Zhang ◽  
Hui Chen

A new detection system has been designed and developed for detecting the contour size of automobile driver airbag. The detection system is mainly composed of a CCD camera, optical system and a computer which can implement image processing and image recognition. This system uses a CCD sensor as its sensitive element, as well as the basic principle of image processing combined with image segmentation and template matching to determine whether the contour size of airbag is qualified. The experimental results show that the system improves the detecting precision, and speed of assembling automobile airbags. It also solves the problems of a heavy workload by manual operations, inaccurate judgments and low efficiency.


Sign in / Sign up

Export Citation Format

Share Document