scholarly journals Thermal Parametric Study of Butt Joints Using Friction Stir Welding

2021 ◽  
Vol 23 (12) ◽  
pp. 285-290
Author(s):  
Irshad Gulzar ◽  
◽  
Dr. Manish Kumar Gupta ◽  

The purpose of this study is to look at the mechanical and microstructural properties of dissimilar 2024 and 7075 aluminum sheets that have been welded together using friction stir welding (FSW). The two sheets, which were aligned with perpendicular rolling directions, were successfully fused; the welded sheets were then tested under strain at room temperature to determine the mechanical response to the materials for the parents Since the fatigue behavior of light metals is known, the fatigue endurance (S–N) curves of welded joints have been achieved. A resonant electro-mechanical testing machine load is the best performance indicator for a significant part of industrial applications; welded sheets is the best performance indicator for a big part of industrial applications. At a load frequency of around 75 Hz, a constant load ratio R = 0.1 was employed. The microstructure that formed as a result of the FSW Optical and scanning electron microscopy have been used to investigate the process, both on ‘as welded’ specimens and on tested specimens following a rupture

2006 ◽  
Vol 519-521 ◽  
pp. 1163-1168 ◽  
Author(s):  
Pasquale Cavaliere ◽  
Antonio Squillace

The effect of processing parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by Friction Stir Welding was analysed in the present study. Different samples were produced by employing a fixed rotating speeds of 1600 RPM and by using the advancing speeds of the tool of 80 and 115 mm/min. All the welds were produced in direction perpendicular to the rolling one for both the alloys and by changing, for all the processing conditions, the alloy positioned on the advancing side of the tool. The mechanical properties of the joints were evaluated by room temperature tensile tests. Fatigue tests on the welds were carried out by using a resonant electro-mechanical testing machine under constant loading control up to 250 Hz sine wave loading. The fatigue tests were conducted in the axial total stress-amplitude control mode with R=smin/smax=0.1. The microstructural evolution of the material was analysed by optical observations of the welds cross sections and SEM observations of the fracture surfaces.


Author(s):  
Santosh Vanama

<p>The paper propose modelling and fabrication of friction stir welding end-effector for ABB IRB1410 robot. A dynamically developing version of pressure welding processes, join material without reaching the fusion temperature called friction stir welding. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phase’s common to fusion welding of high strength aluminium alloys. In this paper, Friction stir welding is applied to aluminum sheets of 2 mm thickness. A prototype setup is developed to monitor the evolution of main forces and tool temperature during the operation. Pressure of a gripper plays a major role for tool rotation and developing torque.  Fabrication of the tool has done. Force calculations are done by placing the sensors on the outer surface of gripper. Methods of evaluating weld quality are surveyed as well.</p>


2012 ◽  
Vol 40 ◽  
pp. 364-372 ◽  
Author(s):  
M. Sarkari Khorrami ◽  
M. Kazeminezhad ◽  
A.H. Kokabi

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1510
Author(s):  
Abootorab Baqerzadeh Chehreh ◽  
Michael Grätzel ◽  
Jean Pierre Bergmann ◽  
Frank Walther

The load increase method, which is highly efficient in rapidly identifying the fatigue performance and strength of materials, is used in this study to investigate friction stir welded (FSW) EN AW-5754 aluminum alloys. Previous investigations have demonstrated the accuracy and efficiency of this method compared to Woehler tests. In this study, it is shown that the load increase method is a valid, accurate and efficient method for describing the fatigue behavior of FSW weld seams. The specimen tests were performed on 2 mm thick aluminum sheets using conventional and stationary tool configurations. It is shown that an increase in fatigue strength of the FSW EN AW-5754 aluminum alloys can be achieved by using the stationary shoulder tool configuration rather than the conventional one.


2013 ◽  
Vol 446-447 ◽  
pp. 312-315
Author(s):  
Ramaraju Ramgopal Varma ◽  
Abdullah Bin Ibrahim ◽  
B. Ravinder Reddy

The present research paper aims in evaluating the strength of the welded AA6351 alloy plates of 6 mm thick by using friction stir welding technique at different rotational speeds The applied welding technique is capable of achieving the mechanical properties of the alloy close to that of the original alloy. In the present investigation, the speeds of the spindle were varied from 1100 rpm to 1500 rpm with a constant transverse speed of 20 mm/min. The tensile strength of the joints is determined by an universal testing machine. The results from the present investigation show that the values of the yield strength were very much closer to the values of the AA6351Alloy prior to welding. It has been found from the experiments that the strength of the joints increases with the increase in the rotational speed; however, the same is decreasing after achieving certain speed.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
X. W. Yang ◽  
T. Fu ◽  
W. Y. Li

Friction stir spot welding (FSSW) is a very useful variant of the conventional friction stir welding (FSW), which shows great potential to be a replacement of single-point joining processes like resistance spot welding and riveting. There have been many reports and some industrial applications about FSSW. Based on the open literatures, the process features and variants, macro- and microstructural characteristics, and mechanical properties of the resultant joints and numerical simulations of the FSSW process were summarized. In addition, some applications of FSSW in aerospace, aviation, and automobile industries were also reviewed. Finally, the current problems and issues that existed in FSSW were indicated.


2020 ◽  
Vol 25 ◽  
pp. 646-648 ◽  
Author(s):  
Sanjay Kumar ◽  
Ashish Kumar Srivastava ◽  
Rakesh Kumar Singh ◽  
Shashi Prakash Dwivedi

2019 ◽  
Vol 1153 ◽  
pp. 7-15
Author(s):  
Victor Verbiţchi ◽  
Radu Cojocaru ◽  
Lia Nicoleta Boţilă

There are various base metals that might be subjected to friction stir welding (FSW). They have different yield strength, ultimate tensile strength and other mechanical characteristics that influence the complex phenomena of the FSW process. The nature, mechanical characteristic and other properties of the base metals introduce also certain requirements for the FSW equipment, because FSW is a mechanical process.Experimental data of the FSW of the following materials are presented and compared:- similar overlapped sheets of aluminium alloy EN AW 5754, having the thickness 1.0 mm; - dissimilar overlapped sheets of 3 - 6 mm thickness of the base metal couples: aluminium alloy EN AW 1200 / copper Cu 99 ET, aluminium alloy EN AW 5754 / copper Cu 99, aluminium alloy EN AW 6082 / copper Cu 99 ET;- sheets of nickel alloy, inconel 718, thickness 8 - 10 mm, by friction stir processing. The characteristics of the FSW tool are described and the main technology parameters are mentioned: overlap, rotational speed of the FSW tool, rotational direction, travel speed, thrust force, as well as electric current of the motor for the rotating motion of the tool.Other important factors are also taken into account: sizes and positioning of the sheets (up or down), rolling direction of the sheets, room temperature, temperature of the sheets, material and temperature of the support plate.The linear energy of the FSW process is the main parameter. This is an indirect parameter, because it must be calculated, based on the previous mentioned parameters. According to the definition, the linear energy depends directly on the mechanical power developed during the stirring process, respectively it depends indirectly on the travel speed.On the other hand, the heat input is directly proportional to the linear energy and the thermal efficiency of the transfer of the heat produced by the friction of the shoulder and pin, to the nugget zone, where the weld metal is produced. These quantities are also analysed.For these materials the power developed by the motor for the rotational movement is determined, as well as the mechanical torque applied to the FSW tool. All these data are important for the design of the FSW equipment, in order to realize its main technical characteristics, depending on the base metals.Conclusions on the results are exposed, with important consequences for the industrial applications of the FSW process.


Sign in / Sign up

Export Citation Format

Share Document