PtRu, PtRuFe and PtRuNi alloy electrocatalysts decorated on composite support C-MWCNTs for direct methanol fuel cells

2021 ◽  
Vol 11 (1) ◽  
pp. 94-98
Author(s):  
Quan Dang Long ◽  
An Nguyen Minh ◽  
Vinh Thach Phuc ◽  
Ngan Nguyen Thi Thanh ◽  
Lil Owin Khưu ◽  
...  

In this work, carbon Vulcan XC-72 (C) and carbon nanotubes (CNTs) supported ternary platinum-ruthenium-iron (PtRuFe) and platinum-ruthenium-nickel (PtRuNi) alloy nanoparticles have been synthesized by a co-reduction method. The catalyst samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The results show that ternary alloy catalysts are always better than binary alloy catalysts. In particular, PtRuNi is the best catalyst for methanol oxidation reaction. 

2005 ◽  
Vol 3 (3) ◽  
pp. 358-360 ◽  
Author(s):  
Jia Rong-Li ◽  
Wang Cheng-Yang ◽  
Zhu Bin

Superfine mesocarbon microbead powders (SFMCMBs) as the new supports for platinum electrocatalysts were first investigated. The Pt∕SFMCMB electrocatalysts were prepared by an impregnation-reduction method, with hexachloroplatinic acid as the platinum precursor and formaldehyde as the reducing agent. The catalysts were characterized with x-ray diffraction (XRD), field emission gun transmission electron microscope (TEM), and electrochemical analysis. TEM photos showed the platinum particles were dispersed uniformly on the surface of SFMCMBs and there existed a little aggregation of platinum particles in the Pt∕SFMCMB catalysts. The TEM photos showed the existence of the platinum on the supports where the average platinum particle size were 4-6nm. The electrochemical analysis proved that SFMCMBs are excellent candidates to be used as the support of platinum electrocatalyst for methanol electrochemical oxidation as the potential catalyst candidate for direct methanol fuel cells (DMFCs).


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040002
Author(s):  
Xiaoyu Yue ◽  
Yixuan Wang ◽  
Ting Zhang ◽  
Wei Gao

[Formula: see text] sub-microrods have been synthesized via a simple two-step route. First, the precursors were prepared by a facile ethylene glycol-mediated method; then, [Formula: see text] sub-microrods were obtained by a limited-oxygen atmosphere deriving from the decomposition of urea at [Formula: see text]C for 3 h in air. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The obtained [Formula: see text] sub-microrods exhibit cubic NiO structure with high crystallinity and anatase [Formula: see text]. Both SEM and TEM show the typical sub-microrods with lengths of [Formula: see text] nm and diameters of [Formula: see text] nm. The uniform sub-microrods have great electrocatalytic performance for methanol oxidation reaction in alkaline solution. This material may have potential applications in direct methanol fuel cells.


2002 ◽  
Vol 57 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Gülsün Gökağaç ◽  
Brendan J. Kennedy

11% Pt/C, 10% Pt + 1%Os/C, 9% Pt + 2%Os/C, 8% Pt + 3%Os/C, 7% Pt + 4%Os/C, 6% Pt + 5%Os/C and 5%Pt + 6% Os/C catalysts have been prepared for methanol oxidation reaction. Transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and cyclic voltammetry have been used to understand the nature of the species present in these catalysts. 7% Pt + 4% Os/C was the most active catalyst, while 8% Pt + 3% Os/C was the least active one. It is found that the metal particle size and distribution on the carbon support, the surface composition and the oxidation states of the metal particles, the metal-metal and metal support interactions are important parameters to define the activity of the catalyst.


2007 ◽  
Vol 7 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Bo Zhou ◽  
Jun-Jie Zhu

A chemical co-reduction route in aqueous solution was developed to synthesize Bi100−xSbx alloys at room temperature. The hydrolyses of Bi(III) and Sb(III) were effectively avoided by selecting proper raw materials and coordinator. X-ray diffraction analysis indicated that the as-prepared Bi100−xSbx alloys were homogeneous and phase-pure, and the Bi/Sb ratios in the alloys were very close to those in the aqueous solutions. The transmission electron microscope observation showed that the as-prepared Bi100−xSbx (x = 0∼100) alloys were particles with a size of tens of nanometers. The selected area electron diffraction patterns confirmed the high crystallinity, the homogeneousness, and the composition controllability of as-prepared alloys. All these characters and the nanometer-scaled size of the alloys are believed to be beneficial to the thermoelectric property of the Bi100−xSbx alloys.


2011 ◽  
Vol 179-180 ◽  
pp. 141-144
Author(s):  
Ke Gao Liu ◽  
Shi Lei ◽  
Bin Xu ◽  
Ya Liu

Cu-In-2Se powders were synthesized by hydrothermal co-reduction method from CuCl2.2H2O, InCl3.4H2O and SeO2 at 95~200 °C in deionized water. The morphology and phases of the products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) respectively. Experimental results show that, CuInSe2 can be obtained at 120~200 °C, the major phase of the products synthesized at 120~200 °C are all the same. However the noticeable impurity phase In(OH)3 still exists in the product powders. The In(OH)3 phase decreases with the increasing of reacting temperature. The product powder obtained at 200 °C has fine and homogeneous particles with diameters of about 500 nm.


2011 ◽  
Vol 239-242 ◽  
pp. 1279-1282
Author(s):  
Xue Jun Zhang ◽  
Zan Han ◽  
Yan Hong Tian ◽  
Yan Feng Yang

The microstructure of two kinds of self-made PAN-based high-modulus carbon fibers (HMCF-1, HMCF-2) was studied by scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM), and was compared with that of T800 and M55J. The correlation of XRD and HRTEM in terms of graphite crystallite sizes and interlayer spacing of graphite layer was also investigated. The results show that the diameters of T800, HMCF-1 and HMCF-2 are almost the same (~5.20μm) and all of them are lager than that of M55J (~4.86μm). The crystal sizes and the degree of graphitization are in the order of HMCF-2>HMCF-1>M55J>T800, while the regularity of the lattice fringes of HMCF-2 is better than those of others.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Tiantian Xia ◽  
Hanrui Shen ◽  
Gang Chang ◽  
Yuting Zhang ◽  
Honghui Shu ◽  
...  

Uniform and sub-10 nm size bimetallic PtPd nanoparticles (NPs) have been synthesized via a simple and facile method without using any surfactants at an ambient temperature. As a green and clean reductive agent, ascorbic acid (AA) was employed for the coreduction of K2PtCl4and K2PdCl4in aqueous solution. The morphology, composition, and structure of PtPd NPs had been characterized by transmission electron microscopy (TEM), field emission high resolution transmission electron microscopy (FE-HRTEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS). Comparing with both the monometallic Pt and Pd, the as-prepared alloy nanoparticles show superior electrocatalytic activity and better tolerance against poisoning by intermediates generated during methanol electrooxidation, which makes them a promising electrocatalysts for direct methanol fuel cells (DMFCs). Meanwhile, the green and simple approach could be easily extended to the manufacture of bimetallic or trimetallic alloy nanomaterials.


2012 ◽  
Vol 569 ◽  
pp. 19-22
Author(s):  
Shi Yan Han ◽  
Zhi Ming Liu ◽  
Di Wang ◽  
Ming Hua Zhu ◽  
Yan Li Ma ◽  
...  

Three kinds of TiO2 materials named Ti0, Ti0.5 and Ti1.0 were prepared via hydrothermal synthesis method using Tetrabutyl titanate (TNB) as the material and different amounts of Gemini Surfactant we prepared as the template. Then the prepared TiO2 nanoparticle was characterized by Scanning electron microscope(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Taking the UV light as the light source ,the photocatalytic activity of TiO2 to rhB was studyed . The results showed that the degradation rate of Ti0, Ti0.5 ,Ti1.0 to RhB respectively was 93.6 % , 93.9 %, 99.7 % at the time of 3 hours. The catalytic activity of Ti0.5 and Ti1.0 was obviously better than Ti0, what’s more, Ti1.0 almost made RhB completely degradated at the time of 3 hours.


2014 ◽  
Vol 521 ◽  
pp. 586-590
Author(s):  
Yong Ping Luo ◽  
Shun Jian Xu ◽  
Zong Hu Xiao ◽  
Yong Huang ◽  
Wei Zhong ◽  
...  

In this work, it was investigated and compared that electro-catalytic oxidation of methanol in acidic medium at TiO2nanotube (TNT) electrode modified by platinum (Pt) with two methods. Pt modified TNT electrodes were prepared by thermal decomposition (TD) and electrolytic deposition (ED). The so-prepared TD-Pt/TNT and ED-Pt/TNT electrodes were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Electrochemical investigations indicate that ED-Pt/TNT has higher electro-catalytic activity and better tolerance to poisoning species in methanol oxidation than TD-Pt/TNT, which can be ascribed to the higher dispersion and stability of ED-Pt than TD-Pt on TNT electrode. The present work provides some basis for the design of high performance catalysts for direct methanol fuel cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
J. C. Calderón ◽  
L. Calvillo ◽  
M. J. Lázaro ◽  
E. Pastor

In this work, Pt-Ru catalysts were synthesized by a novel methodology which includes the use as encapsulating molecules of dendrimers of different generation: zero (DN-0), one (DN-1), two (DN-2), and three (DN-3). Synthesized catalysts were heat-treated at 350°C, and the effects of this treatment was established from the physical (X-ray dispersive energy (XDE) and X-ray diffraction (XRD)) and electrochemical characterization (cyclic voltammetry and chronoamperometry). Results showed that the heat-treatment benefits the catalytic properties of synthesized materials in terms of CO and methanol electrochemical oxidation. The curves for CO stripping were more defined for heat-treated catalysts, and methanol oxidation current densities were higher for these materials. These changes are principally explained from the removal of organic residues remaining on the surface of the Pt-Ru nanoparticles after the synthesis procedure. After the activation of the catalysts by heating at 350°C, the real importance of the use of these encapsulating molecules and the effect of the generation of the dendrimer become visible. From these results, it can be concluded that synthesized catalysts are good catalytic anodes for direct methanol fuel cells (DMFCs).


Sign in / Sign up

Export Citation Format

Share Document