scholarly journals Diel Vertical Distribution Patterns of Pelagic Fish Larvae in Yilan Bay, Taiwan

2022 ◽  
Vol 29 (6) ◽  
pp. 776-783
Author(s):  
Yi-Chen Wang ◽  
Su-Chen Tsai ◽  
Wen-Yu Chen
2009 ◽  
Vol 24 (2) ◽  
pp. 153
Author(s):  
G. Aceves-Medina ◽  
C. J. Robinson ◽  
R. Palomares-García ◽  
J. Gómez-Gutierrez

Análisis de la distribucion vertical de la abundancia de larvas de peces pelágicos menores en el Golfo de California mediante videocámaras submarinas Se utilizaron dos tipos de videocámaras submarinas para estudiar la distribución y abundancia vertical de larvas de los peces pelágicos menores Engraulis mordax, Etrumeus teres y Sardinops sagax a 1 m de resolución, en una localidad en el norte del Golfo de California con condiciones de calma y alta densidad de sardinas adultas. La mayor abundancia promedio (900 larvas m -1 min -1 ) se encontró inmediatamente arriba de la termoclina (33 m) y la picnoclina (36 m), aparentemente no asociada al máximo de clorofila detectado en superficie, ni a la mayor densidad de peces adultos (10 -20 m). Las observaciones con video permitieron determinar la distribución vertical a una resolución imposible de obtener mediante muestreos con redes; sin embargo, esta es una técnica poco útil en zonas con elevada velocidad de las corrientes.


2004 ◽  
Vol 61 (8) ◽  
pp. 1243-1252 ◽  
Author(s):  
A. Sabatés

Abstract The vertical distributions of the larvae of shelf and oceanic fish species that spawn during the winter-mixing period in the Mediterranean are described from 22 vertically stratified plankton tows. Diel differences in the vertical distribution patterns in relation to physical data and potential prey abundance throughout the water column were examined. Even in absence of stratification, the larvae of the various fish species showed different patterns of vertical distribution and diel changes. The larvae of shelf-dwelling species were found in the surface layers, mainly above 50-m depth, and with some exceptions, with very little diel variation in depth distribution. Therefore, the vertical distribution of the larvae of these species coincided with the maximum concentrations of their potential food, nauplii and copepodite stages of copepods. The larvae of mesopelagic fishes showed deeper distributions in the water column and most of these species were located closer to the surface during the day than at night. Given the homogeneity of the physical characteristics throughout the water column, except for light, this behaviour may be determined not only by the higher concentration of prey in the surface layers but also by adequate light levels for feeding.


2014 ◽  
Vol 34 (19) ◽  
Author(s):  
黄志敏 HUANG Zhimin ◽  
陈椽 CHEN Chuan ◽  
刘之威 LIU Zhiwei ◽  
龙胜兴 LONG Shengxing

2020 ◽  
Vol 650 ◽  
pp. 289-308 ◽  
Author(s):  
V Raya ◽  
J Salat ◽  
A Sabatés

This work develops a new method, the box-balance model (BBM), to assess the role of hydrodynamic structures in the survival of fish larvae. The BBM was applied in the northwest Mediterranean to field data, on 2 small pelagic fish species whose larvae coexist in summer: Engraulis encrasicolus, a dominant species, and Sardinella aurita, which is expanding northwards in relation to sea warming. The BBM allows one to quantify the contribution of circulation, with significant mesoscale activity, to the survival of fish larvae, clearly separating the effect of transport from biological factors. It is based on comparing the larval abundances at age found in local target areas, associated with the mesoscale structures (boxes), to those predicted by the overall mortality rate of the population in the region. The application of the BBM reveals that dispersion/retention by hydrodynamic structures favours the survival of E. encrasicolus larvae. In addition, since larval growth and mortality rates of the species are required parameters for application of the BBM, we present their estimates for S. aurita in the region for the first time. Although growth and mortality rates found for S. aurita are both higher than for E. encrasicolus, their combined effect confers a lower survival to S. aurita larvae. Thus, although the warming trend in the region would contribute to the expansion of the fast-growing species S. aurita, we can confirm that E. encrasicolus is well established, with a better adapted survival strategy.


1998 ◽  
Vol 45 (2) ◽  
pp. 208-211 ◽  
Author(s):  
Tsuguo Otake ◽  
Tadashi Inagaki ◽  
Hiroshi Hasumoto ◽  
Noritaka Mochioka ◽  
Katsumi Tsukamoto

2011 ◽  
Vol 89 (9) ◽  
pp. 796-807 ◽  
Author(s):  
S. Tang ◽  
A.G. Lewis ◽  
M. Sackville ◽  
L. Nendick ◽  
C. DiBacco ◽  
...  

We observed diel vertical migration patterns in juvenile pink salmon ( Oncorhynchus gorbuscha (Walbaum, 1792)) and tested the hypothesis that fish behaviour is altered by exposure to sea lice copepodids. Experiments involved replicated field deployments of a large (9 m) plankton column, which provided a vertical distribution enclosure under natural light and salinity conditions. Diel vertical distributions of juvenile pink salmon were observed during the first 3 weeks of seawater acclimation in both the presence and the absence of the ectoparasitic salmon louse ( Lepeophtheirus salmonis (Krøyer, 1838)). Immediately upon entering seawater, juvenile pink salmon preferred the top 1 m of the water column, but they moved significantly deeper down the vertical water column as seawater acclimation time increased. A significant diel migration pattern was observed, which involved a preference for the surface at night-time, compared with daytime. When fish in the column were exposed to L. salmonis copepodids for 3 h, 43%–62% of fish became infected, fish expanded their vertical distribution range, and significant changes in vertical distribution patterns were observed.


1982 ◽  
Vol 39 (8) ◽  
pp. 1150-1163 ◽  
Author(s):  
L. Fortier ◽  
W. C. Leggett

We studied the regulation of ichthyoplankton dispersion in the two-layer circulation of the St. Lawrence upper estuary by determining larval abundance and vertical distribution during high frequency sampling at three stations in May, June, and July, 1979. Monthly variations in capelin (Mallotus villosus) and Atlantic herring (Clupea harengus harengus) abundance were in agreement with the seasonal trends previously reported. Capelin larvae were concentrated in the surface layer, a situation which resulted in seaward drift. No significant growth was observed over the 60-d sampling period indicating continuous recruitment to, and removal from, the sampling area. Herring larvae were concentrated in the deep layer and were carried landward. The average size of herring larvae increased from the downstream to the upstream stations. Short-term fluctuations in the abundance and vertical distribution of the two species were interpreted in terms of the Fickian representation of transport for partially mixed estuaries. The major source of variation in abundance, at a given station, was the tidal advection of horizontal gradients. Capelin larvae and herring larvae smaller than 10 mm did not actively cross the pycnocline and were not submitted to the diffusive effect of the vertical current shear. The dispersal of these larvae was apparently passive. Herring larvae larger than 10 mm performed diel vertical migrations across the pycnocline and were dispersed in the horizontal plane at a faster rate than a passive contaminant of the environment. We conclude that the Fickian approach can be profitably applied to studies of dispersal and mortality of early larval stages of fish in estuaries.Key words: ichthyoplankton, St. Lawrence estuary, dispersion, transport, vertical distribution, diel migrations, variability, abundance, tidal mixing, Fickian


Sign in / Sign up

Export Citation Format

Share Document