Diel vertical distribution of fish larvae during the winter-mixing period in the Northwestern Mediterranean

2004 ◽  
Vol 61 (8) ◽  
pp. 1243-1252 ◽  
Author(s):  
A. Sabatés

Abstract The vertical distributions of the larvae of shelf and oceanic fish species that spawn during the winter-mixing period in the Mediterranean are described from 22 vertically stratified plankton tows. Diel differences in the vertical distribution patterns in relation to physical data and potential prey abundance throughout the water column were examined. Even in absence of stratification, the larvae of the various fish species showed different patterns of vertical distribution and diel changes. The larvae of shelf-dwelling species were found in the surface layers, mainly above 50-m depth, and with some exceptions, with very little diel variation in depth distribution. Therefore, the vertical distribution of the larvae of these species coincided with the maximum concentrations of their potential food, nauplii and copepodite stages of copepods. The larvae of mesopelagic fishes showed deeper distributions in the water column and most of these species were located closer to the surface during the day than at night. Given the homogeneity of the physical characteristics throughout the water column, except for light, this behaviour may be determined not only by the higher concentration of prey in the surface layers but also by adequate light levels for feeding.

2003 ◽  
Vol 60 (6) ◽  
pp. 1342-1351 ◽  
Author(s):  
Henrik Jensen ◽  
Peter J Wright ◽  
Peter Munk

Abstract Vertical distribution patterns of larval and juvenile sandeels were investigated at four locations in the North Sea. Sandeels between 6 and 65 mm were found to depths of 80 m, with vertical distributions dependent on both length and environmental factors. At one location with a stratified water column, the highest densities were found during the day in midwater where food concentration was also highest. In areas without marked vertical hydrographic gradients, larvae were relatively more abundant in surface waters during the day. At all locations, larvae of all sizes were generally more homogeneously distributed in the water column during night than during day. The extent of vertical migration, as measured by the standard deviation of the mean depth, increased generally with length. Gear avoidance was evident for larvae ≥20 mm. Catch efficiency generally depended on both length class and surface light intensity. A simulated drift pattern of larvae, based on ADCP current measurements from two locations, predicts that the horizontal drift trajectory would only be affected slightly by the vertical positioning of the larvae in the water column during the time of sampling. The implication of vertical migrations for dispersal of larvae away from the spawning grounds is discussed.


Author(s):  
Yuichiro Nishibe ◽  
Yuuichi Hirota ◽  
Hiroshi Ueda

Community structure and vertical distribution of oncaeid copepods were investigated at an offshore site in Tosa Bay, southern Japan. Samples were collected with a 0.063 mm closing type net from eight discrete layers between the surface and 500 m depth in August and November 2005. A total of 45 species and three form variants belonging to the genera Triconia, Oncaea, Spinoncaea, Conaea and Epicalymma were identified. The greatest number of species was consistently found in the lower epipelagic zone, at 50–100 m. The vertical distribution patterns of oncaeid copepods were similar between August and November, with the highest abundances in the upper epipelagic zone above the thermocline. The oncaeid maxima corresponded with the depth where appendicularians occurred in high numbers. Dominant species in the water column (0–500 m) were O. venusta small form, O. media, O. scottodicarloi, O. waldemari, O. zernovi, O. tregoubovi, S. ivlevi, S. tenuis and T. conifera. The vertical succession of species composition was almost the same between August and November, although several species showed a downward shift of their depth-range to some extent in November. The oncaeid copepod community could be differentiated into three distinct groups according to the depth layers, each corresponding to different hydrographic conditions in the water column.


Author(s):  
John H. Steele

Organic production in the sea can be measured by studying the changes in phosphate throughout the water column. Results obtained by this method are compared with estimates of carbon uptake using 14C made on the Fladen Ground during 1955 and 1956. There is good general agreement between the two methods but some differences in the vertical distribution.The results are also used to calculate filtering rates of phytoplankton and sinking rates of zooplankton, and to compare observed and predicted vertical distributions of chlorophyll.


Author(s):  
Mauricio F. Landaeta ◽  
Leonardo R. Castro

Vertical distribution of fish larvae can be modified by a series of physical processes occurring in the water column at different time and spatial scales and also by biological processes occurring during larval development. To assess the factors affecting the vertical distribution of larval anchoveta Engraulis ringens during austral spring, meteorological and oceanographic features were measured and stratified ichthyoplankton sampling was carried out in central Chile during active upwelling events. In November 2001, during the upwelling season, southerly winds dominate, and intrusion of low dissolved oxygen occurred in nearshore waters; preflexion larvae of E. ringens were collected in the mixed layer of the water column (the Ekman layer) irrespective of day and night hours. Larvae larger than 10 mm showed an inflated gas bladder during night collections, and non-inflated gas bladder during day hours. Larvae with inflated gas bladders were located significantly at shallower depths during night than at day hours, indicating a direct relationship between gas bladder inflation, diel vertical migration of larval E. ringens and decrease of wind-induced turbulence at night. We discuss the potential implications of larval E. ringens vertical distribution and its variability on the horizontal transport off coastal waters during the upwelling season off central Chile as a biophysical coupling to enhance coastal retention.


2011 ◽  
Vol 89 (9) ◽  
pp. 796-807 ◽  
Author(s):  
S. Tang ◽  
A.G. Lewis ◽  
M. Sackville ◽  
L. Nendick ◽  
C. DiBacco ◽  
...  

We observed diel vertical migration patterns in juvenile pink salmon ( Oncorhynchus gorbuscha (Walbaum, 1792)) and tested the hypothesis that fish behaviour is altered by exposure to sea lice copepodids. Experiments involved replicated field deployments of a large (9 m) plankton column, which provided a vertical distribution enclosure under natural light and salinity conditions. Diel vertical distributions of juvenile pink salmon were observed during the first 3 weeks of seawater acclimation in both the presence and the absence of the ectoparasitic salmon louse ( Lepeophtheirus salmonis (Krøyer, 1838)). Immediately upon entering seawater, juvenile pink salmon preferred the top 1 m of the water column, but they moved significantly deeper down the vertical water column as seawater acclimation time increased. A significant diel migration pattern was observed, which involved a preference for the surface at night-time, compared with daytime. When fish in the column were exposed to L. salmonis copepodids for 3 h, 43%–62% of fish became infected, fish expanded their vertical distribution range, and significant changes in vertical distribution patterns were observed.


2011 ◽  
Vol 59 (3) ◽  
pp. 213-229 ◽  
Author(s):  
Cássia Gôngora Goçalo ◽  
Mario Katsuragawa ◽  
Ilson Carlos Almeida da Silveira

Horizontal and vertical distribution patterns and abundance of larval phosichthyids were investigated from oblique and depth-stratified towns off Southeastern brazilian waters, from São Tomé cape (41ºW.; 22ºS.) to São Sebastião island (45ºW.; 24ºS.). The sampling was performed during two cruises (January/2002 -summer; August/2002 -winter). Overall 538 larvae of Phosichthyidae were collected during summer and 158 in the winter. Three species, Pollichthys mauli, Vinciguerria nimbaria and Ichthyioccoccus sp. occurred in the area, but Ichthyioccoccus sp. was extremely rare represented by only one specimen, caught in the oceanic region during the summer. Geographically, larval were concentrated in the oceanic region, and vertically distributed mainly between the surface and 80 m depth in the summer and winter. Larvae were more abundant during the night, performing a diel vertical migration in the water column. The results suggest that the meandering and eddies of Brazil Current play important role on the transport and distribution patterns of larval phosichthyids over the oceanic and neritic area in the Southeastern Brazil.


2009 ◽  
Vol 24 (2) ◽  
pp. 153
Author(s):  
G. Aceves-Medina ◽  
C. J. Robinson ◽  
R. Palomares-García ◽  
J. Gómez-Gutierrez

Análisis de la distribucion vertical de la abundancia de larvas de peces pelágicos menores en el Golfo de California mediante videocámaras submarinas Se utilizaron dos tipos de videocámaras submarinas para estudiar la distribución y abundancia vertical de larvas de los peces pelágicos menores Engraulis mordax, Etrumeus teres y Sardinops sagax a 1 m de resolución, en una localidad en el norte del Golfo de California con condiciones de calma y alta densidad de sardinas adultas. La mayor abundancia promedio (900 larvas m -1 min -1 ) se encontró inmediatamente arriba de la termoclina (33 m) y la picnoclina (36 m), aparentemente no asociada al máximo de clorofila detectado en superficie, ni a la mayor densidad de peces adultos (10 -20 m). Las observaciones con video permitieron determinar la distribución vertical a una resolución imposible de obtener mediante muestreos con redes; sin embargo, esta es una técnica poco útil en zonas con elevada velocidad de las corrientes.


2006 ◽  
Vol 64 (1) ◽  
pp. 18-30 ◽  
Author(s):  
P. Pepin ◽  
K. A. Curtis ◽  
P. V. R. Snelgrove ◽  
B. de Young ◽  
J. A. Helbig

Abstract Pepin, P., Curtis, K.A., Snelgrove, P.V.R., de Young, B., and Helbig, J.A. 2007. Optimal estimation of catch by the continous underway fish egg sampler based on a model of the vertical distribution of American plaice (Hippoglossoides platessoides) eggs – ICES Journal of Marine Science, 64, 18–30. We investigate how the vertical stratification of the water column (specifically density) affects predictions of the catch of American plaice eggs (Hipploglossoides platessoides) from a fixed-depth sampler [the continuous underway fish egg sampler (CUFES)] relative to the integrated abundance in the water column measured in bongo tows. A steady-state model of the vertical distribution of fish eggs coupled with a simple model of the vertical profile of eddy diffusivity (i.e. mixing) is applied. Key model parameters are estimated through optimization of a one-to-one relationship between predicted and observed catches fit, using a generalized linear model with a Poisson, negative binomial, or gamma error structure. The incorporation of data on the vertical structure of the water column significantly improved the ability to forecast CUFES catches when using Poisson or negative binomial error structure, but not using a gamma distribution. Optimal maximum likelihood parameter estimates for eddy diffusivity and egg buoyancy fell within the range of expected values. The degree of uncertainty in the parameterization of eddy diffusivity suggests, however, that greater understanding of the forces that determine the vertical profile of mixing is critical to achieving strong predictive capabilities. The inverse problem of predicting integrated abundance from CUFES catches did not benefit from the environmental-driven model because of the high uncertainty in the catches from the CUFES.


Sign in / Sign up

Export Citation Format

Share Document