scholarly journals A MODIFIED GENERALIZED CHAIN RATIO IN REGRESSION ESTIMATOR

2021 ◽  
Vol 19 (1) ◽  
pp. 1-7
Author(s):  
F. S. APANTAKU ◽  
O. M. OLAYIWOLA ◽  
A. O. AJAYI ◽  
O. S. JAIYEOLA

Generalized Chain ratio in regression type estimator is efficient for estimating the population mean. Many authors have derived a Generalized Chain ratio in regression type estimator. However, the computation of its Mean Square Error (MSE) is cumbersome based on the fact that several iterations have to be done, hence the need for a modified generalized chain ratio in regression estimator with lower MSE. This study proposed a modified generalized chain ratio in regression estimator which is less cumbersome in its computation. Two data sets were used in this study. The first data were on tobacco production by tobacco producing countries with yield of tobacco (variable of interest), area of land and production in metric tonnes as the auxiliary variables. The second data were the number of graduating pupils (variable of interest) in Ado-Odo/Ota local government, Ogun state with the number of enrolled pupils in primaries one and five as the auxiliary variables. The mean square errors in the existing and proposed estimators for various values of alpha were derived and relative efficiency was determined. The MSE for the existing estimator of tobacco production gave six values 0.0080, 0.0079, 0.0080, 0.0082, 0.0087 and 0.0093 with 0.0079 as the minimum while the proposed estimator gave 0.0054. The MSEs for the existing estimator for the graduating pupils were 20.73, 11.08, 7.49, 9.96, 18.50 and 33.10 with 7.49 as the minimum while the proposed was 6.52. The results of this study showed that the proposed estimator gave lower MSE for the two data sets, hence it is more efficient.      

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Abdullah Y. Al-Hossain ◽  
Mursala Khan

To obtain the best estimates of the unknown population parameters have been the key theme of the statisticians. In the present paper we have suggested some estimators which estimate the population parameters efficiently. In short we propose a ratio, product, and regression estimators using two auxiliary variables, when there are some maximum and minimum values of the study and auxiliary variables, respectively. The properties of the proposed strategies in terms of mean square errors (variances) are derived up to first order of approximation. Also the performance of the proposed estimators have shown theoretically and these theoretical conditions are verified numerically by taking four real data sets under which the proposed class of estimators performed better than the other previous works.


Author(s):  
Ceren Ünal ◽  
Cem Kadilar

In this article, we propose an estimator using the exponential function for the population mean in the case of non-response on both the study and the auxiliary variables. The equations for the Bias and Mean Square Error (MSE) are derived to the first order of approximation and theoretical comparisons are made with existing estimators in literature. Besides, we examine the efficiency of the proposed estimator according to the classical ratio and regression estimator, Hansen-Hurwitz unbiased estimator, and the estimator of Singh et al. (2009). Following theoretical comparisons, we infer that the proposed estimator is more efficient than compared estimators under the obtained conditions in theory. Moreover, these theoretical results are supported numerically by providing an empirical study on five different data sets.


1991 ◽  
Vol 127 ◽  
pp. 108-115
Author(s):  
W. Kosek ◽  
B. Kołaczek

AbstractThe PTRF is based on 43 sites with 64 SSC collocation points with the optimum geographic distribution, which were selected from all stations of the ITRF89 according to the criterion of the minimum value of the errors of 7 parameters of transformation. The ITRF89 was computed by the IERS Terrestrial Frame Section in Institut Geographique National - IGN and contains 192 VLBI and SLR stations (points) with 119 collocation ones. The PTRF has been compared with the ITRF89. The errors of the 7 parameters of transformation between the PTRF and 18 individual SSC as well as the mean square errors of station coordinates are of the same order as those for the ITRF89. The transformation parameters between the ITRF89 and the PTRF are negligible and their errors are of the order of 3 mm.


1975 ◽  
Vol 29 (2) ◽  
pp. 175-188
Author(s):  
M. Mosaad Allam

In practice, photogrammetrists use a single statistic reliability interval criterion, based on the mean square errors, to judge the accuracy of adjustment of photogrammetric blocks. Even in some cases, if the practical and theoretical distributions of frequency interval agree, such a test does not make it possible to establish the closeness of their convergence nor the degree of their difference. In other words, to get a complete picture of the character of the distribution of errors in the adjusted photogrammetric blocks, it is insufficient to investigate any single statistic. In the Research and Development Section of the Topographical Survey Directorate, a computer program (SABA) has been designed to analyze the errors of photogrammetric block adjustments, compute various statistical parameters and check the sample distribution using Kolmogorov criterion. Based on the decision taken, the correspondence between the empirical and theoretical distribution series are checked using the criterion χ2. The program divides the adjusted block to make a comparative evaluation of accuracies in the different sub-blocks. In this case, in addition to Kolmogorov and χ2 tests, the program checks the reliability intervals of the means and mean square errors of the samples and uses Fisher criterion ‘F’ to check the hypothesis of the equality of dispersion. SABA is coded in Fortran IV and Compass for the CDC CYBER 74 and requires a central memory of 28K decimal works. SABA is the acronym for Statistical Analysis of Block Adjustment.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Yunusa Olufadi ◽  
Cem Kadilar

We suggest an estimator using two auxiliary variables for the estimation of the unknown population variance. The bias and the mean square error of the proposed estimator are obtained to the first order of approximations. In addition, the problem is extended to two-phase sampling scheme. After theoretical comparisons, as an illustration, a numerical comparison is carried out to examine the performance of the suggested estimator with several estimators.


Author(s):  
Iryna Golichenko ◽  
Oleksand Masyutka ◽  
Mikhail Moklyachuk

The problem of optimal linear estimation of functionals depending on the unknown values of a random fieldζ(t,x), which is mean-square continuous periodically correlated with respect to time argumenttє R and isotropic on the unit sphere Sn with respect to spatial argumentxєSn. Estimates are based on observations of the fieldζ(t,x) +Θ(t,x) at points (t,x) :t< 0;xєSn, whereΘ(t,x) is an uncorrelated withζ(t,x) random field, which is mean-square continuous periodically correlated with respect to time argumenttє R and isotropic on the sphereSnwith respect to spatial argumentxєSn. Formulas for calculating the mean square errors and the spectral characteristics of the optimal linear estimate of functionals are derived in the case of spectral certainty where the spectral densities of the fields are exactly known. Formulas that determine the least favourable spectral densities and the minimax (robust) spectral characteristics are proposed in the case where the spectral densities are not exactly known while a class of admissible spectral densities is given.


2012 ◽  
Vol 239-240 ◽  
pp. 1395-1398
Author(s):  
Yan Ju Wang ◽  
Li Kun Yang ◽  
Yu Tian Wang

In mine environmental monitoring system, the concentration of mine gas is an important indicator. Aiming at the redundant information from multi-gas sensors in the measurement system, adaptive weighted fusion algorithm was presented. Using this algorithm, it was unnecessary to be aware of any pre-defined knowledge about these datas measured by the sensors. That the algorithm could adjust the fused sensor’s weight in time according to the variation in sensors’ variances makes the mean square error minimal. It was also proved theoretically that this fusion algorithm is linear and unbiased, in respect of the least mean square errors. Simulation results showed that this fusion algorithm is effective and the result of fused data is superior to the mean estimate algorithm in respect of accuracy and fault tolerance.


Author(s):  
Asifa Mubeen ◽  
Nasir Jamal ◽  
Muhammad Hanif ◽  
Usman Shahzad

The main objective of the present study was to develop a new ridge regression estimator and fit the ridge regression model to the peanut production data of Pakistan. Peanut production data has been used to analyze the results. The data has been taken peanut production and growth rate of Pakistan. The mean square error of the proposed estimator is compared with some existing ridge regression estimators. In this study, we proposed a ridge regression estimator. The properties of proposed estimators are also discussed. The real data set of peanut production is used for assuming the performance of proposed and existing estimators. Numerical results of real data set show that proposed ridge regression estimator provides best results as compare to reviewed ones.


1978 ◽  
Vol 48 ◽  
pp. 471-478
Author(s):  
M. Sanchez

Abstract:This paper contains an analysis of Saturn observations with Danjon astrolabe at San Fernando. These observations were obtained during eight winter campaigns (1970-1978). Table 1 gives the mean values for each of the quantities Δα and Δδ (astrolabe - American Ephemeris) and the mean square errors. Figure 1 to 8 shows the results (right ascension and declination) and the corresponding smoothing curves. The accuracy of these curves is also given in table 1. The analysis of the values Δα and Δδ seem to show that there are differences, between the theoretical development of ephemeris and the observations, of periodical character.


2017 ◽  
Vol 927 (9) ◽  
pp. 42-49
Author(s):  
A.V. Voytenko

The article notes that the replacement of the English name «Precise Point Positioning» (PPP) in Russian-language sources is possible using the term «accurate differential positioning» (TDP) technique. The author proposes to use both terms. This article contains information about the practical implementation of the PPP in the on-line service. The author has analyzed the research on the accuracy of PPP foreign and domestic experts and scholars. The author analyzed the data about the convergence time for PPP solutions. These data belong to another Russian scientist. The results of evaluating the accuracy of the PPP of different scientists led to the next. The author of this article gave the mean square errors topocentric coordinates of the geodetic points. The coordinates of the points must be obtained by dual-frequency GPS-measurements for a period of 24 hours with the help of PPP. The author proposed a formula for the calculation of the mean square error of the spatial position of geodetic point, if its position is obtained in the processing of dual-frequency GPS-observations of less than 24 hours. The article written conclusions about the features, defects and PPP development.


Sign in / Sign up

Export Citation Format

Share Document