scholarly journals Stress and stability analysis of steel piping systems in the petroleum industry

2020 ◽  
Author(s):  
◽  
Justin Pillay

This study aims to reach a level of proficiency on the available technical theories to assess steel pressure piping systems and the identification of potential risks of failure. The research focuses mainly on piping systems in the petroleum industry. The importance of this study is based on the risk reduction of petroleum plant downtime and the harming of life as a result of piping failures. The apparent need for piping systems stress analysis was a result of the many failures that occurred at Indy Oil’s petroleum plant. The recent acquisition of the petroleum plant under the GUD Holdings group brought along minimum engineering experience with regards to piping systems. GUD’s inhouse engineering teams executed the many plant expansion and upgrade projects. A common industry perception is that piping systems are basic and do not require much attention. These misconceptions are a result of many piping failures in the industry. The failures that occurred called for a thorough investigation of all equipment setups and piping installations at Indy Oil. Specific failure identifications at the petroleum plant were done. The research and analysis of piping systems stress analysis were performed to aid in understanding the cause of these failures. Fluid dynamics, as a major contributor to stress and strain state in pipes, is the object of much attention. The dimensional specification and layout optimization of a piping system is highly dependent on the internal piping pressure. Studies, developments, and prediction analysis on the impact of sustained and thermal loads are reviewed to understand the numerical and analytical techniques available which enables the analysis of various piping systems. A risk- informed approach is applied that incorporates various design criteria, as well as, failure contributors in piping systems. At first, each component and failure mode is determined separately. Thereafter, the instances of simultaneous loading and increased risk of failure in piping systems have been determined. The available literature is used to source necessary data, as well as, compare the obtained results with those available in the literature. Government statutory requirements are used as a basis in the design process. Material specifications and engineering quality is controlled by these governing standards. The application of this study is done by the design and analysis of a piping system for Indy Oil’s Tank Farm. Piping systems failures as a result of improper design raised importance for a thorough stress analysis at the Petrochemical site. The calculations of stress-strain contributions are done using theoretical methods, as well as, computer software programs. The piping system is analysed on various conditions according to the process requirements of the Plant. Various load cases were developed to account for simultaneous loadings. The expected result of the system is for stress contributions to not exceed the maximum allowable stresses. CAESAR II software is selected as the most suitable for the analysis. The simulation is done on each pipe element and demonstrates a three-dimensional analysis. The results of the study were used to determine the failure modes of previously installed piping systems and to create a design guide for all future piping systems projects.

Author(s):  
Don R. Edwards

The American Standards Association (ASA) B31.3-1959 Petroleum Refinery Piping Code [1] grew out of an ASA document that addressed all manner of fluid conveying piping systems. ASA B31.3 was created long before widespread engineering use of computer “mainframes” or even before the inception of piping stress analysis software. From its inception until recent times, the B31.3 Process Piping Code [2] (hereafter referred to as the “Code”) has remained ambiguous in several areas. This paper describes some of these subtle concepts that are included in the Code 2006 Edition for Appendix S Example S3. This paper discusses: • the effect of moment reversal in determining the largest Displacement Stress Range, • the impact of the average axial stress caused by displacement strains on the Example S3 piping system and the augmenting of the Code Eq. (17) thereto, • a brief comparison of Example S3 results to that of the operating stress range evaluated in accordance with the 2006 Code Appendix P Alternative Requirements.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Raffaele Ciardiello ◽  
Andrea Tridello ◽  
Luca Goglio ◽  
Giovanni Belingardi

In the last decades, the use of adhesives has rapidly increased in many industrial fields. Adhesive joints are often preferred to traditional fasteners due to the many advantages that they offer. For instance, adhesive joints show a better stress distribution compared to the traditional fasteners and high mechanical properties under different loading conditions. Furthermore, they are usually preferred for joining components made of different materials. A wide variety of adhesives is currently available: thermoset adhesives are generally employed for structural joints but recently there has been a significant increment in the use of thermoplastic adhesives, in particular of the hot-melt adhesives (HMAs). HMAs permit to bond a large number of materials, including metal and plastics (e.g., polypropylene, PP), which can be hardly bonded with traditional adhesives. Furthermore, HMAs are characterized by a short open time and, therefore, permit for a quick and easy assembly process since they can be easily spread on the adherend surfaces by means of a hot-melt gun and they offer the opportunity of an ease disassembling process for repair and recycle. For all these reasons, HMAs are employed in many industrial applications and are currently used also for bonding polypropylene and polyolefin piping systems. In the present paper, the dynamic response of single lap joints (SLJ) obtained by bonding together with a polyolefin HMA two polypropylene substrates was experimentally assessed. Quasi-static tests and dynamic tests were carried out to investigate the strain rate effect: dynamic tests were carried out with a modified instrumented impact pendulum. Relevant changes in the joint performance have been put in evidence. Failure modes were finally analysed and compared. A change in the failure mode is experimentally found: in quasi-static tests SLJ failed due to a cohesive failure of the adhesive, whereas in dynamic tests the SLJ failed due to an interfacial failure, with a low energy absorption.


Author(s):  
Satoshi Tsunoi ◽  
Akira Mikami ◽  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

The authors have proposed an analytical model by which they can simulate the dynamic and failure behaviors of piping systems with local wall thinning against seismic loadings. In the previous paper [13], the authors have carried out a series of experimental investigations about dynamic and failure behaviors of the piping system with fully circumferential 50% wall thinning at an elbow or two elbows. In this paper these experiments have been simulated by using the above proposed analytical model and investigated to what extent they can catch the experimental behaviors by simulations.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned wall elbow, because the life of piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Zhen-Yu Lin ◽  
Fan-Ru Lin ◽  
Juin-Fu Chai ◽  
Kuo-Chun Chang

Based on the issue of life safety and immediate needs of emergency medical services provided by hospitals after strong earthquakes, this paper aims to introduce a research programme on assessment and improvement strategies for a typical configuration of sprinkler piping systems in hospitals. The study involved component tests and subsystem tests. Cyclic loading tests were conducted to investigate the inelastic behaviour of components including concrete anchorages, screwed fittings of small-bore pipes and couplings. Parts of a horizontal piping system of a seismic damaged sprinkler piping system were tested using shaking table tests. Furthermore, horizontal piping subsystems with seismic resistant devices such as braces, flexible pipes and couplings were also tested. The test results showed that the main cause of damage was the poor capacity of a screwed fitting of the small-bore tee branch. The optimum improvement strategy to achieve a higher nonstructural performance level for the horizontal piping subsystem is to strengthen the main pipe with braces and decrease moment demands on the tee branch by the use of flexible pipes. The hysteresis loops and failure modes of components were further discussed and will be used to conduct numerical analysis of sprinkler piping systems in future studies.


Author(s):  
Jinsuo Nie ◽  
Giuliano DeGrassi ◽  
Charles H. Hofmayer ◽  
Syed A. Ali

The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the U.S. and Japan on seismic issues, the U.S. Nuclear Regulatory Commission (NRC)/ Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using detailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.


Author(s):  
Klaus Kerkhof ◽  
Fabian Dwenger ◽  
Gereon Hinz ◽  
Siegfried Schmauder

The load bearing behavior of piping systems depends considerably on support distances and stiffness as well as cross section characteristics. Stiffness of supports can often be defined only with difficulty by applying simplified procedures or guidelines based on assumptions. Load cases can be estimated quite well, but the safety assessment of a piping system can only be as reliable as the system model can realistically describe the present support stiffness or imperfections e.g. local wall thinning. As a consequence, the prediction of the system response may be poor. It is likely that calculated frequencies differ from natural frequencies determined experimentally. These frequency shifts lead to unrealistic predictions of stress analysis. Examples for overestimations and underestimations of stress analysis are given regarding the load case earthquake, depending on whether the frequency shift runs into or out of the plateau of the applied floor response spectrum. The influence of local wall thinning on modal characteristics is investigated. Conservative estimations of the influence on the load bearing behavior regarding severe local wall thinning are given. For fatigue checks the linear response of an experimental piping system is calculated and safety margins are demonstrated by comparing calculated with experimental results.


Author(s):  
Izumi Nakamura ◽  
Naoto Kasahara

Abstract To investigate the failure behavior of piping systems under excessive seismic loads, shaking table tests on piping system models made of a simulation material have been executed. The simulation material adopted in the experiment was lead-antimony (Pb-Sb) alloy. The piping system model was composed of two elbows made of Pb-Sb alloy, one additional mass, and two fixed anchors. Input motions were sinusoidal wave. The failure modes of the piping system were examined by varying the additional mass and frequency of the input sinusoidal wave. Through the excitation tests, the failure mode which was named as “ratchet and subsequent collapse” was obtained successfully. The result which was classified as “no failure after 500 cycles” was also obtained. It was found that the occurrence of the failure depended on the ratio of the input frequency to the specimen’s natural frequency, and the ratio of additional mass weight to the limit mass weight. Though the effect of higher modes on the failure behavior was necessary to be more investigated, it seemed that the tendency of dominant failure behavior was similar to that of the single-elbow specimen investigated in the previous study. Moreover, it was confirmed that the experimental approach to use a simulation material was applicable for piping system model with multiple elbows.


Author(s):  
Kannan Subramanian ◽  
Jorge Penso ◽  
Graham McVinnie ◽  
Greg Garic

Offshore piping systems may be subject to low temperatures due to operation related scenarios and are cause for brittle fracture concern. The analyses included in this work consider probable events leading to low temperature conditions such as auto-refrigeration. In such circumstances, brittle fracture assessments of piping are typically carried out using API 579-1/ASME FFS-1, latest referred as API 579, procedures. The assessment of piping systems are in many cases very involved, requiring extended piping system information followed by stress analysis and MAT calculations depending on the material type, thickness of the piping analyzed, and stress levels. In addition, the component-by-component assessment approach recommended in API 579 leads to tedious calculations. In this paper, approaches used for static and dynamic low temperature scenarios are presented. Static cases involve constant pressures and temperatures. Dynamic cases involve varying pressures and temperatures as the low temperature events unfold (e.g., blowdown of a valve or a vessel). Dynamic cases warrant the requirement of a safe operating envelope or MAT curve similar to those developed for pressure vessels. Case studies involving the influence of the extent of the system analyzed and the restraint conditions on the results are also presented. In addition, the importance of separately assessing the rated components such as flanges and valves away from the stress analysis is discussed. Based on the assessments carried out, a discussion on the toughness rules defined in ASME Section VIII Divisions 1, 2, and the original piping code of construction is provided.


Sign in / Sign up

Export Citation Format

Share Document