scholarly journals Broken Rotor Bars Fault Detection Based on Envelope Analysis Spectrum and Neural Network in Induction Motors

2018 ◽  
Vol 3 (3) ◽  
pp. 106-116
Author(s):  
Saddam BENSAOUCHA ◽  
Sid Ahmed BESSEDIK ◽  
Aissa AMEUR ◽  
Abdellatif SEGHIOUR

In this paper, a study has presented the performance of a neural networks technique to detect the broken rotor bars (BRBs) fault in induction motors (IMs). In this context, the fast Fourier transform (FFT) applied on Hilbert modulus obtained via the stator current signal has been used as a diagnostic signal to replace the FFT classic, the characteristics frequency are selected from the Hilbert modulus spectrum, in addition, the different load conditions are used as three inputs data for the neural networks. The efficiency of the proposed method is verified by simulation in MATLAB environment.

2021 ◽  
Vol 3 (2 (111)) ◽  
pp. 88-95
Author(s):  
Mohammed Obaid Mustafa

The growing demand for dependable manufacturing techniques has sped up research into condition monitoring and fault diagnosis of critical motor parts. On the other hand, in modern industry, machine maintenance is becoming increasingly necessary. An insufficient maintenance strategy can result in unnecessarily high downtime or accidental machine failure, resulting in significant financial and even human life losses. Downtime and repair costs rise as a result of failure. Furthermore, developing an online condition monitoring method may be one solution to come up for the problem. Early detection of faults is very vital since they grow quickly and can cause further problems to the motor. This paper proposes an effective strategy for the classification of broken rotor bars (BRBs) for induction motors (IMs) that uses a new approach based on Artificial Neural Network (ANN) and stator current envelope. The stator current envelope is extracted using the cubic spline interpolation process. This is based on the idea that the amplitude-modulated motor current signal can be revealed using the motor current envelope. The stator current envelope is used to select seven features, which will be used as input for the neural network. Five IM conditions were experimentally used in this study, including a part of BRB, 1 BRB, 2 BRBs and 3 BRBs. The new feature extraction and selection approach achieves a higher level of accuracy than the conventional method for motor fault classification, according to the experimental results. Indeed, the results are impressive, and it is capable of detecting the exact number of broken rotor bars under full load conditions


2019 ◽  
Vol 11 (4) ◽  
pp. 86 ◽  
Author(s):  
César Pérez López ◽  
María Delgado Rodríguez ◽  
Sonia de Lucas Santos

The goal of the present research is to contribute to the detection of tax fraud concerning personal income tax returns (IRPF, in Spanish) filed in Spain, through the use of Machine Learning advanced predictive tools, by applying Multilayer Perceptron neural network (MLP) models. The possibilities springing from these techniques have been applied to a broad range of personal income return data supplied by the Institute of Fiscal Studies (IEF). The use of the neural networks enabled taxpayer segmentation as well as calculation of the probability concerning an individual taxpayer’s propensity to attempt to evade taxes. The results showed that the selected model has an efficiency rate of 84.3%, implying an improvement in relation to other models utilized in tax fraud detection. The proposal can be generalized to quantify an individual’s propensity to commit fraud with regards to other kinds of taxes. These models will support tax offices to help them arrive at the best decisions regarding action plans to combat tax fraud.


2021 ◽  
Vol 13 (11) ◽  
pp. 6194
Author(s):  
Selma Tchoketch_Kebir ◽  
Nawal Cheggaga ◽  
Adrian Ilinca ◽  
Sabri Boulouma

This paper presents an efficient neural network-based method for fault diagnosis in photovoltaic arrays. The proposed method was elaborated on three main steps: the data-feeding step, the fault-modeling step, and the decision step. The first step consists of feeding the real meteorological and electrical data to the neural networks, namely solar irradiance, panel temperature, photovoltaic-current, and photovoltaic-voltage. The second step consists of modeling a healthy mode of operation and five additional faulty operational modes; the modeling process is carried out using two networks of artificial neural networks. From this step, six classes are obtained, where each class corresponds to a predefined model, namely, the faultless scenario and five faulty scenarios. The third step involves the diagnosis decision about the system’s state. Based on the results from the above step, two probabilistic neural networks will classify each generated data according to the six classes. The obtained results show that the developed method can effectively detect different types of faults and classify them. Besides, this method still achieves high performances even in the presence of noises. It provides a diagnosis even in the presence of data injected at reduced real-time, which proves its robustness.


2019 ◽  
Vol 2019 (02) ◽  
pp. 89-98
Author(s):  
Vijayakumar T

Predicting the category of tumors and the types of the cancer in its early stage remains as a very essential process to identify depth of the disease and treatment available for it. The neural network that functions similar to the human nervous system is widely utilized in the tumor investigation and the cancer prediction. The paper presents the analysis of the performance of the neural networks such as the, FNN (Feed Forward Neural Networks), RNN (Recurrent Neural Networks) and the CNN (Convolutional Neural Network) investigating the tumors and predicting the cancer. The results obtained by evaluating the neural networks on the breast cancer Wisconsin original data set shows that the CNN provides 43 % better prediction than the FNN and 25% better prediction than the RNN.


Author(s):  
Yongzhi Qu ◽  
Gregory W. Vogl ◽  
Zechao Wang

Abstract The frequency response function (FRF), defined as the ratio between the Fourier transform of the time-domain output and the Fourier transform of the time-domain input, is a common tool to analyze the relationships between inputs and outputs of a mechanical system. Learning the FRF for mechanical systems can facilitate system identification, condition-based health monitoring, and improve performance metrics, by providing an input-output model that describes the system dynamics. Existing FRF identification assumes there is a one-to-one mapping between each input frequency component and output frequency component. However, during dynamic operations, the FRF can present complex dependencies with frequency cross-correlations due to modulation effects, nonlinearities, and mechanical noise. Furthermore, existing FRFs assume linearity between input-output spectrums with varying mechanical loads, while in practice FRFs can depend on the operating conditions and show high nonlinearities. Outputs of existing neural networks are typically low-dimensional labels rather than real-time high-dimensional measurements. This paper proposes a vector regression method based on deep neural networks for the learning of runtime FRFs from measurement data under different operating conditions. More specifically, a neural network based on an encoder-decoder with a symmetric compression structure is proposed. The deep encoder-decoder network features simultaneous learning of the regression relationship between input and output embeddings, as well as a discriminative model for output spectrum classification under different operating conditions. The learning model is validated using experimental data from a high-pressure hydraulic test rig. The results show that the proposed model can learn the FRF between sensor measurements under different operating conditions with high accuracy and denoising capability. The learned FRF model provides an estimation for sensor measurements when a physical sensor is not feasible and can be used for operating condition recognition.


Author(s):  
Daniela Danciu

Neural networks—both natural and artificial, are characterized by two kinds of dynamics. The first one is concerned with what we would call “learning dynamics”. The second one is the intrinsic dynamics of the neural network viewed as a dynamical system after the weights have been established via learning. The chapter deals with the second kind of dynamics. More precisely, since the emergent computational capabilities of a recurrent neural network can be achieved provided it has suitable dynamical properties when viewed as a system with several equilibria, the chapter deals with those qualitative properties connected to the achievement of such dynamical properties as global asymptotics and gradient-like behavior. In the case of the neural networks with delays, these aspects are reformulated in accordance with the state of the art of the theory of time delay dynamical systems.


2007 ◽  
Vol 11 (6) ◽  
pp. 1883-1896 ◽  
Author(s):  
A. Piotrowski ◽  
S. G. Wallis ◽  
J. J. Napiórkowski ◽  
P. M. Rowiński

Abstract. The prediction of temporal concentration profiles of a transported pollutant in a river is still a subject of ongoing research efforts worldwide. The present paper is aimed at studying the possibility of using Multi-Layer Perceptron Neural Networks to evaluate the whole concentration versus time profile at several cross-sections of a river under various flow conditions, using as little information about the river system as possible. In contrast with the earlier neural networks based work on longitudinal dispersion coefficients, this new approach relies more heavily on measurements of concentration collected during tracer tests over a range of flow conditions, but fewer hydraulic and morphological data are needed. The study is based upon 26 tracer experiments performed in a small river in Edinburgh, UK (Murray Burn) at various flow rates in a 540 m long reach. The only data used in this study were concentration measurements collected at 4 cross-sections, distances between the cross-sections and the injection site, time, as well as flow rate and water velocity, obtained according to the data measured at the 1st and 2nd cross-sections. The four main features of concentration versus time profiles at a particular cross-section, namely the peak concentration, the arrival time of the peak at the cross-section, and the shapes of the rising and falling limbs of the profile are modeled, and for each of them a separately designed neural network was used. There was also a variant investigated in which the conservation of the injected mass was assured by adjusting the predicted peak concentration. The neural network methods were compared with the unit peak attenuation curve concept. In general the neural networks predicted the main features of the concentration profiles satisfactorily. The predicted peak concentrations were generally better than those obtained using the unit peak attenuation method, and the method with mass-conservation assured generally performed better than the method that did not account for mass-conservation. Predictions of peak travel time were also better using the neural networks than the unit peak attenuation method. Including more data into the neural network training set clearly improved the prediction of the shapes of the concentration profiles. Similar improvements in peak concentration were less significant and the travel time prediction appeared to be largely unaffected.


2019 ◽  
Vol 9 (4) ◽  
pp. 616 ◽  
Author(s):  
Maciej Skowron ◽  
Marcin Wolkiewicz ◽  
Teresa Orlowska-Kowalska ◽  
Czeslaw Kowalski

Electrical winding faults, namely stator short-circuits and rotor bar damage, in total constitute around 50% of all faults of induction motors (IMs) applied in variable speed drives (VSD). In particular, the short circuits of stator windings are recognized as one of the most difficult failures to detect because their detection makes sense only at the initial stage of the damage. Well-known symptoms of stator and rotor winding failures can be visible in the stator current spectra; however, the detection and classification of motor windings faults usually require the knowledge of human experts. Nowadays, artificial intelligence methods are also used in fault recognition. This paper presents the results of experimental research on the application of the stator current symptoms of the converter-fed induction motor drive to electrical fault detection and classification using Kohonen neural networks. The experimental tests of a diagnostic setup based on a virtual measurement and data pre-processing system, designed in LabView, are described. It has been shown that the developed neural detectors and classifiers based on self-organizing Kohonen maps, trained with the instantaneous symmetrical components of the stator current spectra (ISCA), enable automatic distinguishing between the stator and rotor winding faults for supplying various voltage frequencies and load torque values.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fereshteh Mataeimoghadam ◽  
M. A. Hakim Newton ◽  
Abdollah Dehzangi ◽  
Abdul Karim ◽  
B. Jayaram ◽  
...  

Abstract Protein structure prediction is a grand challenge. Prediction of protein structures via the representations using backbone dihedral angles has recently achieved significant progress along with the on-going surge of deep neural network (DNN) research in general. However, we observe that in the protein backbone angle prediction research, there is an overall trend to employ more and more complex neural networks and then to throw more and more features to the neural networks. While more features might add more predictive power to the neural network, we argue that redundant features could rather clutter the scenario and more complex neural networks then just could counterbalance the noise. From artificial intelligence and machine learning perspectives, problem representations and solution approaches do mutually interact and thus affect performance. We also argue that comparatively simpler predictors can more easily be reconstructed than the more complex ones. With these arguments in mind, we present a deep learning method named Simpler Angle Predictor (SAP) to train simpler DNN models that enhance protein backbone angle prediction. We then empirically show that SAP can significantly outperform existing state-of-the-art methods on well-known benchmark datasets: for some types of angles, the differences are 6–8 in terms of mean absolute error (MAE). The SAP program along with its data is available from the website https://gitlab.com/mahnewton/sap.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3009
Author(s):  
Pawel Ewert

This article presents the effectiveness of bispectrum analysis for the detection of the rotor unbalance of an induction motor supplied by the mains and a frequency converter. Two diagnostic signals were analyzed, as well as the stator current and mechanical vibrations of the tested motors. The experimental tests were realized for two low-power induction motors, with one and two pole pairs, respectively. The unbalance was modeled using a test mass mounted on a specially prepared disc and directly on the rotor and the influence of this unbalance location was tested and discussed. The results of the bispectrum analysis are compared with results of Fourier transform and the effectiveness of unbalance detection are discussed and compared. The influence of the registration time of the analyzed signal on the quality of fault symptom analyses using both transforms was also tested. It is shown that the bispectrum analysis provides an increased number of fault symptoms in comparison with the classical spectral analysis as well as it is not sensitive to a shorter registration time of the diagnostic signals.


Sign in / Sign up

Export Citation Format

Share Document