scholarly journals INFLUENCE OF COLD ROLLING ON THE MECHANICAL AND TECHNOLOGICAL PROPERTIES OF AHSS STEEL GRADES

2017 ◽  
Author(s):  
Francisco Morganti ◽  
Michael Breuer ◽  
Michael Degner ◽  
Gerald Bader ◽  
Wolfgang Bleck
2018 ◽  
Vol 43 (2) ◽  
pp. 15-20
Author(s):  
Ismar Hajro ◽  
Petar Tasić

The paper presents results of combined, conventional and non-conventional, approach for evaluation of mechanical and technological properties of structural steel's welded joints. The selected structural steels are in the range of most common used strength level(s), as well as corresponding various chemical composition concept(s) and processing routes. A short review regarding weldability is presented based on recommendation provided in EN 1011-2, manufacturers recommendation, and own results. However, even it is a well-known fact, mismatching of properties is presented rather to provide sense of its level for particular steel grades. Moreover, the level of under-matching of weakest weld zone (coarse grained heat affected zone), provided by mean of welding thermo-cycle simulation is presented. This is due to the fact that such estimation is not possible with everyday conventional (standardized) testing. The most important design and technological properties of welded joint(s) are considered; e.g. strength, ductility, hardness, microstructure and toughness.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 568
Author(s):  
Saeed Sadeghpour ◽  
Vahid Javaheri ◽  
Ahmad Kermanpur ◽  
Jukka Kömi

The kinetics of strain-induced martensite (SIM) formation in a Ti-bearing 201L stainless steel were evaluated and compared to the existing results of two conventional stainless steel grades; i.e., 201L and 304L AISI. The effects of strain rate and rolling pass reduction on the kinetics of SIM formation during cold rolling were investigated. The Ti-microalloying was found to be intensifying the transformation due to lowering the stacking fault energy. It was seen that decreasing the rolling pass reduction strongly affected the variation of SIM volume fraction. Furthermore, a close correlation between the hardness and strain-induced transformation was found arising from microstructural evolution during the cold rolling process. Three stages in the hardening behavior were detected associated with lath-type martensite formation, transition stage of martensite laths break up and formation of dislocation-cell-type martensite.


2019 ◽  
Vol 62 (11) ◽  
pp. 846-851
Author(s):  
A. A. Akberdin ◽  
M. M. Karbaev

Alloys of boron and barium are applied to improve the quality of cast iron, steel, aluminum and other metals. The first industry produces mainly in the form of ferroboron, containing 6 – 17 % of boron depending on the brand. It is produced by an expensive aluminothermic method due to the use of boric anhydride and aluminum powder. At the same time, presence of aluminum in the metal is inevitable, it degrades the technological properties of cast iron and forms line alumina inclusions in steel. Extra-furnace removal of Al leads to oxidation of boron and its loss with slags. Therefore, the authors have proposed new methods for smelting boron-containing ferroalloys. Recent developments include the production technology of boron-containing ferrosilicon, which has been tested in industrial conditions. But its use may be limited in smelting of low-silicon steel grades. Barium is an effective modifier. Due to its low solubility in iron, it is produced in the form of alloys with silicon or aluminum. In the first case, silicides (BaSi, BaSi2 ) are formed and therefore such alloys are called silicon barium or ferrosilicon with barium. In present work, there has been studied the possibility of producing modifier with boron and barium ferroalloy. It was believed that the simultaneous presence of barium and boron in it can be demand for industry. At the first stage, chemistry of transformations in BaO– B2O3 – C ironless system was considered using the carbothermic method. A complete thermodynamic analysis of chemical interactions in this system was performed in the temperature range of 1400 – 3000 K. Possibility of the formation of a condensed metal phase due to boron carbides (B4C) and barium (BaC2 ), as well as barium hexaboride (BaB6 ) is shown. The obtained data can serve as the basis for creation of a new ferroalloy simultaneously containing boron and barium.


2017 ◽  
Vol 2017 (5) ◽  
pp. 73-80
Author(s):  
Marcin Korzeniowski ◽  
Beata Białobrzeska ◽  
Martyna Maciejewska

Author(s):  
O.T. Woo ◽  
G.J.C. Carpenter

To study the influence of trace elements on the corrosion and hydrogen ingress in Zr-2.5 Nb pressure tube material, buttons of this alloy containing up to 0.83 at% Fe were made by arc-melting. The buttons were then annealed at 973 K for three days, furnace cooled, followed by ≈80% cold-rolling. The microstructure of cold-worked Zr-2.5 at% Nb-0.83 at% Fe (Fig. 1) contained both β-Zr and intermetallic precipitates in the α-Zr grains. The particles were 0.1 to 0.7 μm in size, with shapes ranging from spherical to ellipsoidal and often contained faults. β-Zr appeared either roughly spherical or as irregular elongated patches, often extending to several micrometres.The composition of the intermetallic particles seen in Fig. 1 was determined using Van Cappellen’s extrapolation technique for energy dispersive X-ray analysis of thin metal foils. The method was employed to avoid corrections for absorption and fluorescence via the Cliff-Lorimer equation: CA/CB = kAB · IA/IB, where CA and CB are the concentrations by weight of the elements A and B, and IA and IB are the X-ray intensities; kAB is a proportionality factor.


Author(s):  
W. A. Chiou ◽  
N. L. Jeon ◽  
Genbao Xu ◽  
M. Meshii

For many years amorphous metallic alloys have been prepared by rapid quenching techniques such as vapor condensation or melt quenching. Recently, solid-state reactions have shown to be an alternative for synthesizing amorphous metallic alloys. While solid-state amorphization by ball milling and high energy particle irradiation have been investigated extensively, the growth of amorphous phase by cold-rolling has been limited. This paper presents a morphological and structural study of amorphization of Cu and Ti foils by rolling.Samples of high purity Cu (99.999%) and Ti (99.99%) foils with a thickness of 0.025 mm were used as starting materials. These thin foils were cut to 5 cm (w) × 10 cm (1), and the surface was cleaned with acetone. A total of twenty alternatively stacked Cu and Ti foils were then rolled. Composite layers following each rolling pass were cleaned with acetone, cut into half and stacked together, and then rolled again.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Sign in / Sign up

Export Citation Format

Share Document