scholarly journals Evaluation of Forest Road Damages Using Return Periods Caused by Heavy Rains in Kanuma and Nikko Cities of Tochigi Prefecture, Japan

Forestist ◽  
2021 ◽  
Author(s):  
Kazuhiro Aruga ◽  
◽  
Taisei Sekiguchi ◽  
Tadamichi Sato ◽  
Yasuhiro Shuin ◽  
...  
2020 ◽  
Vol 140 (9) ◽  
pp. 1082-1090
Author(s):  
Hiroyuki Nakagomi ◽  
Yoshihiro Fuse ◽  
Yasuki Nagata ◽  
Hironaga Miyamoto ◽  
Masashi Yokotsuka ◽  
...  

2016 ◽  
Vol 167 (5) ◽  
pp. 294-301
Author(s):  
Leo Bont

Optimal layout of a forest road network The road network is the backbone of forest management. When creating or redesigning a forest road network, one important question is how to shape the layout, this means to fix the spatial arrangement and the dimensioning standard of the roads. We consider two kinds of layout problems. First, new forest road network in an area without any such development yet, and second, redesign of existing road network for actual requirements. For each problem situation, we will present a method that allows to detect automatically the optimal road and harvesting layout. The method aims to identify a road network that concurrently minimizes the harvesting cost, the road network cost (construction and maintenance) and the hauling cost over the entire life cycle. Ecological issues can be considered as well. The method will be presented and discussed with the help of two case studies. The main benefit of the application of optimization tools consists in an objective-based planning, which allows to check and compare different scenarios and objectives within a short time. The responses coming from the case study regions were highly positive: practitioners suggest to make those methods a standard practice and to further develop the prototype to a user-friendly expert software.


2021 ◽  
Vol 131 ◽  
pp. 102562
Author(s):  
Vanessa de Souza Gomes ◽  
Cássio Augusto Ussi Monti ◽  
Carolina Souza Jarochinski e Silva ◽  
Lucas Rezende Gomide
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 296-302 ◽  
Author(s):  
Dini Morteza ◽  
Nikooy Mehrdad ◽  
Naskovets Michael Trofimovich ◽  
Ghomi Alireza

In this research, the results of an experimental survey on the measurement of vertical stresses are presented. Four treatments were used in this study such as combination of geotextile vertical and horizontal structure with dimensions of 5 × 5 and 10 × 10 cm, horizontal geotextile and the treatment without geotextile. Five sensors were installed in different hole locations and the lead of the truck traffic was transmitted by cables to data logging and recording devices to measure the pressure from vehicle traffic on the simulated pavement layer. Mean comparison of the treatments showed that the geotextile with vertical and horizontal structure and dimensions of 5 × 5 cm exerted the lowest pressure on the lower layers compared with the other treatments and there was a significant difference between the value of this treatment and the other treatments and that this treatment could significantly reduce the pressure of truck traffic on the forest road.


2004 ◽  
Vol 118 (2) ◽  
pp. 164
Author(s):  
George W. Douglas

In Canada, Lemmon's Holly Fern, Polystichum lemmonii, is restricted to the Baldy Mountain area on the eastern side of the Okanagan River valley in south-central British Columbia. This population represents the northern limits of the species which ranges south through northern Idaho, Washington and Oregon to northern California. In British Columbia, P. lemmonii is associated with ultramafic rocky ridges within a montane forest at an elevation of 1900 m. The population in the Baldy Mountain area is relatively small, unprotected and potentially imperilled by mining exploration, forest road construction or wildfires.


2006 ◽  
Vol 32 (1) ◽  
pp. 126-142 ◽  
Author(s):  
Benjamin B. Mirus ◽  
Brian A. Ebel ◽  
Keith Loague ◽  
Beverley C. Wemple

Sign in / Sign up

Export Citation Format

Share Document