scholarly journals Fabrication and evaluation of potentiometric sensors of an anticancer drug (Gemcitabine)

2020 ◽  
Vol 11 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Iyad Darweesh Al-Kashef ◽  
Salman Mostafa Saadeh ◽  
Khalid Ibrahim Abed Almonem ◽  
Nasser Mohammed Abu Ghalwa ◽  
Hazem Mohammed Abu Shawish

Accurate, rapid and inexpensive determination of gemcitabine, an anticancer drug, is of high interest. This manuscript describes the use of potentiometric sensors as a basis for this work given their known attractive characteristics that meet our needs. Potentiometric sensors were comprised of carbon paste S1, coated wire S2 and PVC membrane S3, of gemcitabine (an anticancer drug) were fabricated, studied and evaluated. The calibration plots for these electrodes showed a Nernstian slope of 58.4±0.3, 59.5±0.3 and 58.3±0.3 mV per decade with the limit of detection: 6.50×10-5, 7.20×10-5 and 4.60×10-5 for sensors S1, S2 and S3, respectively. The electrodes have a short and stable response time of ~5 seconds and good reproducibility in a pH range of 2.5-9.5. The present sensors show distinct selectivity toward the drug ion in comparison to several inorganic ions, sugars, amino acids and some common drug excipients. Gemcitabine was determined successfully in ampoules and urine using these sensors by the calibration curve method.

2011 ◽  
Vol 8 (s1) ◽  
pp. S467-S473 ◽  
Author(s):  
Mohammad Reza Abedi ◽  
Hassan Ali Zamani

A new Eu3+PVC membrane electrode based on 1,2-diaminopropane-N, N,N',N'-tetraacetic acid (DAPTA) as a suitable ionophore has been prepared and studied. The electrode shows a good selectivity for Eu(III) ion with respect to most common cations including alkali, alkaline earth, transition and heavy metal ions. This electrode has a wide linear dynamic range from 1.0×10-6to 1.0×10-2M with a Nernstian slope of 19.7±0.5 mV per decade and a low detection limit of 7.2×10-7M in the pH range of 2.5–9.1, while the response time was rapid (<10 s). The practical utility of the electrodes has been demonstratedby their use as indicator electrodes in the potentiometric titration of Eu3+ions with EDTA and for the determination of Eu3+in some water sample solutions.


2016 ◽  
Vol 13 (4) ◽  
pp. 829-837
Author(s):  
Baghdad Science Journal

PVC membrane sensor for the selective determination of Mefenamic acid (MFA) was constructed. The sensor is based on ion association of MFA with Dodecaphospho molybdic acid (PMA) and Dodeca–Tungstophosphoric acid(PTA) as ion pairs. Nitro benzene (NB) and di-butyl phthalate (DBPH) were used as plasticizing agents in PVC matrix membranes. The specification of sensor based on PMA showed a linear response of a concentration range 1.0 × 10–2 –1.0 × 10–5 M, Nernstian slopes of 17.1-18.86 mV/ decade, detection limit of 7 × 10-5 -9.5 × 10 -7M, pH range 3 – 8 , with correlation coefficients lying between 0.9992 and 0.9976, respectively. By using the ionphore based on PTA gives a concentration range of 1.0 × 10–4 –1.0 × 10–5 M, Nernstian slope of 17.18-18.4 mV/ decade, limit of detection 8.0 × 10–6-9.3 × 10-5M,pH range 3 – 8 and correlation coefficients range between 0.9984 and 0.9891, respectively. The measurement interferences in the presence of Li+, Na+, Mg2+ Ca2+, Fe3+and Al3+ were studied using separate and match potential methods for selectivity coefficient determination. The method was applied for the determination of Mefenamic Acid in pharmaceutical preparations


2011 ◽  
Vol 8 (s1) ◽  
pp. S97-S104 ◽  
Author(s):  
Hassan Ali Zamani

2-(4-Oxopentan-2-ylideneamino) isoindoline-1,3-dione (OID) was found to be a suitable neutral ionophore in the fabrication of a highly selective Ho3+membrane sensor. The electrode has a near-Nernstian slope of 19.6±0.5 mV per decade with a wide concentration range between 1.0×10-6and 1.0×10-2mol/L in the pH range of 3.5–8.8, having a fast response time (∼5 s) and a detection limit of 5.8×10-7mol/L. This electrode presented very good selectivity and sensitivity towards the Ho3+ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The practical utility of the electrode has been demonstrated by its use as an indicator electrode for the potentiometric titration of a Ho3+solution with EDTA and for the determination of Ho3+ions concentration in mixtures of two and three different ions.


2003 ◽  
Vol 1 (3) ◽  
pp. 242-259 ◽  
Author(s):  
Ewa Gorodkiewicz ◽  
Paweł Falkowski ◽  
Anna Sankiewicz ◽  
Zbigniew Figaszewski

AbstractThe analytical properties of an ion-selective electrode sensitive to labetalol with a liquid membrane, based on ion-pair complexes with sodium tetraphenylborate (TPB-Na+) are described. The studied electrode can be used for the determination of labetalol hydrochloride as a protonated form of labetalol in pharmaceuticals. The calibration curve, e.g. EMF=f(pCLabHCl) is linear in the range from 10−5 to 10−2 mol L−1 with a correlation coefficient of 0.9992 and slope of 61.13 mV/decade, which is close to the Nernstian slope. The detection limit of the examined electrode is 7.20×10−6 mol L−1. The influence of pH of the tested solutions on the formulation of the electrode is not as considerable since the electrode works correctly in the pH range 3.0–8.0. The main attributes of the developed electrode are: stability, good reproducibility of EMF and short response time, close to 30 seconds depending on labetalol concentration in the solution. The electrode shows good selectivity for many inorganic ions. The selectivity for drug cations is weaker due to the structural similarity of the interfering cations to labetalol. The results of labetalol determination using direct potentiometry in drugs such as Pressocard (Polpharma) and Trandate (GlaxoWellcome) were compatible with the quantity of labetalol declared by the manufacturer, and with parallel UV spectrophotometric and HPLC determinations.


Polimery ◽  
2021 ◽  
Vol 66 (11-12) ◽  
pp. 589-601
Author(s):  
Sachin Kumar ◽  
Sushil K. Sindhu ◽  
Praveen Kumar ◽  
Amit Sharma ◽  
Suresh Sagadevan

Three different carbon paste (CP), silk-screen (SP) and poly (vinyl chloride) (PVC) modified electrodes were obtained to verify the reliability of AVELOX, the generic name of which is Moxifloxacin HCl (AV-MOXH). The sensing membranes were containing AVELOX ion associated complexes with sodium tetraphenylborate (NaTPB), phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and ammonium reineckate (RN) as electroactive materials. All three electrodes gave fast, viable, and near-Nernstian linear responses over a relative wide concentration range that ranged from 1.010-6 to 1.010-2 mol / L AV-MOXH at 25° C with a monovalent cationic decrease. The sensors demonstrated a good discernment of AV-MOXH from numerous inorganic and organic compounds such as glucose, sucrose, Na+, Ca+, etc. Additionally, the isothermal coefficients along with selectivity coefficients were calculated. The modified Screen Printed Electrode sensor appeared to be highly sensitive for the determination of AV-MOXH. The electrode response was observed in pH range 2--6 for ISPE electrodes and IPVC electrodes and 3--7 for ICPE electrodes under various temperature conditions. The short response time, lifetime validity, recovery, and all the methods of validation such as limit of detection and limit of quantification were estimated. The potentiometric method turned out to be suitable for determining AV-MOXH in pharmacological formulations, and the findings obtained are comparable to the “HPLC official method” in terms of the agreement. As a result, the postulated potentiometric approach was verified in accordance with IUPAC guidelines.


2016 ◽  
Vol 66 (4) ◽  
pp. 503-514 ◽  
Author(s):  
Haitham Alrabiah ◽  
Abdulrahman Al-Majed ◽  
Mohammed Abounassif ◽  
Gamal A.E. Mostafa

Abstract The fabrication and development of two polyvinyl chloride (PVC) membrane sensors for assaying phenobarbitone sodium are described. Sensors 1 and 2 were fabricated utilizing β- or γ-cyclodextrin as ionophore in the presence of tridodecylmethylammonium chloride as a membrane additive, and PVC and dioctyl phthalate as plasticizer. The analytical parameters of both sensors were evaluated according to the IUPAC guidelines. The proposed sensors showed rapid, stable anionic response (-59.1 and -62.0 mV per decade) over a relatively wide phenobarbitone concentration range (5.0 × 10-6-1 × 10-2 and 8 × 10-6-1 × 10-2 mol L-1) in the pH range of 9-11. The limit of detection was 3.5 × 10-6 and 7.0 × 10-6 mol L-1 for sensors 1 and 2, respectively. The fabricated sensors showed high selectivity for phenobarbitone over the investigated foreign species. An average recovery of 2.54 μg mL-1 phenobarbitone sodium was 97.4 and 101.1 %, while the mean relative standard deviation was 3.0 and 2.1 %, for sensors 1 and 2, respectively. The results acquired for determination of phenobarbitone in its dosage forms utilizing the proposed sensors are in good agreement with those obtained by the British Pharmacopoeial method.


2010 ◽  
Vol 8 (2) ◽  
pp. 382-391 ◽  
Author(s):  
Joanna Lenik ◽  
Cecylia Wardak

AbstractIbuprofen membrane electrodes based on different plasticizers: diisobutyl phthalate (DIBP), o-nitrophenyloctyl ether (o-NPOE), dioctyl sebacate (DOS) and tetraoctylammonium 2-(4-isobutylphenyl)propionate were prepared. All electrodes show: a near Nernstian slope of characteristic (58.3–60.9 mV decade−1) in the measurement range (10−4–10−1 mol L−1), limit of detection (5.0×10−5 mol L−1), really long lifetime (12 months), dependence of the electrode potential on pH (5.5–9.0), reproducibility of potential (0.6–1.2 mV) and selectivity coefficients in relation to some organic and inorganic anions. The electrodes were applied for the determination of ibuprofen in tablets by the calibration curve method and the standard addition method.


2016 ◽  
Vol 99 (6) ◽  
pp. 1499-1504 ◽  
Author(s):  
Azza Aziz ◽  
Nesrin Khamees ◽  
Tagreed Abdel-Fattah Mohamed ◽  
Abeer Rashad Derar

Abstract The potentiometric response characteristics and analytical applications of a poly(vinyl chloride) (PVC)-free all-solid-state ion-selective electrode for dapoxetine hydrochloride (DAP) are examined. The Nernstian response of the electrode was evaluated by comparison with PVC-based liquid membrane and carbon paste electrodes. The PVC-free electrode is prepared by direct incorporation of dapoxetine-tetraphenyl borate (DAP–TPB) as a sensing element into a commercial nail varnish containing cellulose acetate propionate. The composite was applied onto a 3 mm diameter graphite disk electrode. The electrode exhibited a Nernstian slope of 56.0 mV/decade in the concentration range of 1 × 10−4 to 1 × 10−2 mol/L with an LOD of 2 × 10−5 mol/L. The electrode is independent of pH in the range of 2 to 6 and showed good selectivity for DAP with respect to a large number of inorganic cations and amino acids. Comparable Nernstian slope, sensitivity, pH range, and selectivity pattern were obtained with a PVC membrane and a carbon paste incorporating DAP–TPB as a sensing element and dioctylphthalate as a solvent mediator. The electrodes were used for the determination of DAP in pure solution and in tablets without extraction with high accuracy and precision (RSD ≤ 2%). The nail varnish solid-state electrode is simple, economical, and rapid when compared with PVC membrane and carbon paste electrodes.


2010 ◽  
Vol 75 (5) ◽  
pp. 563-575 ◽  
Author(s):  
Moslem Mohammadi ◽  
Mehdi Khodadadian ◽  
Mohammad K. Rofouei

A plasticized poly(vinyl chloride) membrane electrode based on 4-[(5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl]benzene-1,3-diol (L) for highly selective determination of palladium(II) (in PdCl42– form) is developed. The electrode showed a good Nernstian response (29.6 ± 0.4 mV per decade) over a wide concentration range (3.1 × 10–7 to 1.0 × 10–2 mol l–1). The limit of detection was 1.5 × 10–7 mol l–1. The electrode has a response time of about 20 s, and it can be used for at least 2 months without observing any considerable deviation from Nernstian response. The proposed electrode could be used in the pH range of 2.5–5.5. The practical utility of the electrode has been demonstrated by its use for the estimation of palladium content in aqueous samples.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3150
Author(s):  
Fatehy M. Abdel-Haleem ◽  
Sonia Mahmoud ◽  
Nour Eldin T. Abdel-Ghani ◽  
Rasha Mohamed El Nashar ◽  
Mikhael Bechelany ◽  
...  

Levofloxacin (LF) is a medically important antibiotic drug that is used to treat a variety of bacterial infections. In this study, three highly sensitive and selective carbon paste electrodes (CPEs) were fabricated for potentiometric determination of the LF drug: (i) CPEs filled with carbon paste (referred to as CPE); (ii) CPE coated (drop-casted) with ion-selective PVC membrane (referred to as C-CPE); (iii) CPE filled with carbon paste modified with a plasticizer (PVC/cyclohexanone) (referenced as P-CPE). The CPE was formulated from graphite (Gr, 44.0%) and reduced graphene oxide (rGO, 3.0%) as the carbon source, tricresyl phosphate (TCP, 47.0%) as the plasticizer; sodium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (St-TFPMB, 1.0%) as the ion exchanger; and levofloxacinium-tetraphenylborate (LF-TPB, 5.0%) as the lipophilic ion pair. It showed a sub-Nernstian slope of 49.3 mV decade−1 within the LF concentration range 1.0 × 10−2 M to 1.0 × 10−5 M, with a detection limit of 1.0 × 10−5 M. The PVC coated electrode (C-CPE) showed improved sensitivity (in terms of slope, equal to 50.2 mV decade−1) compared to CPEs. After the incorporation of PVC paste on the modified CPE (P-CPE), the sensitivity increased at 53.5 mV decade−1, indicating such improvement. The selectivity coefficient (log KLF2+,Fe+3pot.) against different interfering species (Na+, K+, NH4+, Ca2+, Al3+, Fe3+, Glycine, Glucose, Maltose, Lactose) were significantly improved by one to three orders of magnitudes in the case of C-CPE and P-CPE, compared to CPEs. The modification with the PVC membrane coating significantly improved the response time and solubility of the LF-TPB within the electrode matrix and increased the lifetime. The constructed sensors were successfully applied for LF determination in pharmaceutical preparation (Levoxin® 500 mg), spiked urine, and serum samples with high accuracy and precision.


Sign in / Sign up

Export Citation Format

Share Document