scholarly journals AI Accidents: An Emerging Threat

2021 ◽  
Author(s):  
Zachary Arnold ◽  
◽  
Helen Toner

As modern machine learning systems become more widely used, the potential costs of malfunctions grow. This policy brief describes how trends we already see today—both in newly deployed artificial intelligence systems and in older technologies—show how damaging the AI accidents of the future could be. It describes a wide range of hypothetical but realistic scenarios to illustrate the risks of AI accidents and offers concrete policy suggestions to reduce these risks.

2020 ◽  
Author(s):  
Ben Buchanan ◽  
John Bansemer ◽  
Dakota Cary ◽  
Jack Lucas ◽  
Micah Musser

Based on an in-depth analysis of artificial intelligence and machine learning systems, the authors consider the future of applying such systems to cyber attacks, and what strategies attackers are likely or less likely to use. As nuanced, complex, and overhyped as machine learning is, they argue, it remains too important to ignore.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Javed Iqbal ◽  
Zeeshan Javed ◽  
Haleema Sadia ◽  
Ijaz A. Qureshi ◽  
Asma Irshad ◽  
...  

AbstractArtificial intelligence (AI) is the use of mathematical algorithms to mimic human cognitive abilities and to address difficult healthcare challenges including complex biological abnormalities like cancer. The exponential growth of AI in the last decade is evidenced to be the potential platform for optimal decision-making by super-intelligence, where the human mind is limited to process huge data in a narrow time range. Cancer is a complex and multifaced disorder with thousands of genetic and epigenetic variations. AI-based algorithms hold great promise to pave the way to identify these genetic mutations and aberrant protein interactions at a very early stage. Modern biomedical research is also focused to bring AI technology to the clinics safely and ethically. AI-based assistance to pathologists and physicians could be the great leap forward towards prediction for disease risk, diagnosis, prognosis, and treatments. Clinical applications of AI and Machine Learning (ML) in cancer diagnosis and treatment are the future of medical guidance towards faster mapping of a new treatment for every individual. By using AI base system approach, researchers can collaborate in real-time and share knowledge digitally to potentially heal millions. In this review, we focused to present game-changing technology of the future in clinics, by connecting biology with Artificial Intelligence and explain how AI-based assistance help oncologist for precise treatment.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


2020 ◽  
Author(s):  
Amol Thakkar ◽  
Veronika Chadimova ◽  
Esben Jannik Bjerrum ◽  
Ola Engkvist ◽  
Jean-Louis Reymond

<p>Computer aided synthesis planning (CASP) is part of a suite of artificial intelligence (AI) based tools that are able to propose synthesis to a wide range of compounds. However, at present they are too slow to be used to screen the synthetic feasibility of millions of generated or enumerated compounds before identification of potential bioactivity by virtual screening (VS) workflows. Herein we report a machine learning (ML) based method capable of classifying whether a synthetic route can be identified for a particular compound or not by the CASP tool AiZynthFinder. The resulting ML models return a retrosynthetic accessibility score (RAscore) of any molecule of interest, and computes 4,500 times faster than retrosynthetic analysis performed by the underlying CASP tool. The RAscore should be useful for the pre-screening millions of virtual molecules from enumerated databases or generative models for synthetic accessibility and produce higher quality databases for virtual screening of biological activity. </p>


2021 ◽  
Vol 2068 (1) ◽  
pp. 012042
Author(s):  
A Kolesnikov ◽  
P Kikin ◽  
E Panidi

Abstract The field of logistics and transport operates with large amounts of data. The transformation of such arrays into knowledge and processing using machine learning methods will help to find additional reserves for optimizing transport and logistics processes and supply chains. This article analyses the possibilities and prospects for the application of machine learning and geospatial knowledge in the field of logistics and transport using specific examples. The long-term impact of geospatial-based artificial intelligence systems on such processes as procurement, delivery, inventory management, maintenance, customer interaction is considered.


Author(s):  
Dirk Beerbaum ◽  
Julia Margarete Puaschunder

Technological improvement in the age of information has increased the possibilities to control the innocent social media users or penalize private investors and reap the benefits of their existence in hidden persuasion and discrimination. This chapter takes as a case the transparency technology XBRL (eXtensible Business Reporting Language), which should make data more accessible as well as usable for private investors. Considering theoretical literature and field research, a representation issue for principles-based accounting taxonomies exists, which intelligent machines applying artificial intelligence (AI) nudge to facilitate decision usefulness. This chapter conceptualizes ethical questions arising from the taxonomy engineering based on machine learning systems and advocates for a democratization of information, education, and transparency about nudges and coding rules.


Beverages ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 62 ◽  
Author(s):  
Claudia Gonzalez Viejo ◽  
Damir D. Torrico ◽  
Frank R. Dunshea ◽  
Sigfredo Fuentes

Beverages is a broad and important category within the food industry, which is comprised of a wide range of sub-categories and types of drinks with different levels of complexity for their manufacturing and quality assessment. Traditional methods to evaluate the quality traits of beverages consist of tedious, time-consuming, and costly techniques, which do not allow researchers to procure results in real-time. Therefore, there is a need to test and implement emerging technologies in order to automate and facilitate those analyses within this industry. This paper aimed to present the most recent publications and trends regarding the use of low-cost, reliable, and accurate, remote or non-contact techniques using robotics, machine learning, computer vision, biometrics and the application of artificial intelligence, as well as to identify the research gaps within the beverage industry. It was found that there is a wide opportunity in the development and use of robotics and biometrics for all types of beverages, but especially for hot and non-alcoholic drinks. Furthermore, there is a lack of knowledge and clarity within the industry, and research about the concepts of artificial intelligence and machine learning, as well as that concerning the correct design and interpretation of modeling related to the lack of inclusion of relevant data, additional to presenting over- or under-fitted models.


AI Magazine ◽  
2017 ◽  
Vol 38 (4) ◽  
pp. 99-106
Author(s):  
Jeannette Bohg ◽  
Xavier Boix ◽  
Nancy Chang ◽  
Elizabeth F. Churchill ◽  
Vivian Chu ◽  
...  

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2017 Spring Symposium Series, held Monday through Wednesday, March 27–29, 2017 on the campus of Stanford University. The eight symposia held were Artificial Intelligence for the Social Good (SS-17-01); Computational Construction Grammar and Natural Language Understanding (SS-17-02); Computational Context: Why It's Important, What It Means, and Can It Be Computed? (SS-17-03); Designing the User Experience of Machine Learning Systems (SS-17-04); Interactive Multisensory Object Perception for Embodied Agents (SS-17-05); Learning from Observation of Humans (SS-17-06); Science of Intelligence: Computational Principles of Natural and Artificial Intelligence (SS-17-07); and Wellbeing AI: From Machine Learning to Subjectivity Oriented Computing (SS-17-08). This report, compiled from organizers of the symposia, summarizes the research that took place.


Author(s):  
Harshit Bhardwaj ◽  
Pradeep Tomar ◽  
Aditi Sakalle ◽  
Uttam Sharma

Agriculture is the oldest and most dynamic occupation throughout the world. Since the population of world is always increasing and land is becoming rare, there evolves an urgent need for the entire society to think inventive and to find new affective solutions to farm, using less land to produce extra crops and growing the productivity and yield of those farmed acres. Agriculture is now turning to artificial intelligence (AI) technology worldwide to help yield healthier crops, track soil, manage pests, growing conditions, coordinate farmers' data, help with the workload, and advance a wide range of agricultural tasks across the entire food supply chain.


Sign in / Sign up

Export Citation Format

Share Document