scholarly journals RADAR-BASED RAINFALL ESTIMATION IN BOYONG RIVER (BO-D5)

2021 ◽  
Vol 3 (1) ◽  
pp. 007-019
Author(s):  
Henggar Risa Destania ◽  
Achmad Syarifudin

Sediment-related disasters are terrible disasters that can catastrophically impact facilities. People must keep in mind to make sediment-related disaster information that can be predicted from rainfall and response of drainage area by using snakelike. This research produces important indices on precipitation related to debris. It shows the current status of the stage of the response of drainage area against rainfall by using a couple of short- and long-term indices. It shows the water storage volume in the soil layer with the calculation of soil water index (SWI) by using X-band MP (Multi-Parameter) rainfall radar data that has been installed at the top of Merapi Mountain (Merapi Museum). It was confirmed that from June 2018 – June 2019, with 80.28 mm SWI, maximum values do not exceed the standard reference value of SWI (120 – 160 mm) set from JMA. It means that 80.28 mm of SWI value has not yet become the maximum limit of SWI value for lahar occurrence in the Boyong drainage area (BO-D5). The maximum limit of SWI value can be generated if sediment disaster occurrences are available.

2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Henggar Risa Destania

<p align="center"><strong>ABSTRACT</strong></p><p><em>Sediment-related disaster are terrible disaster that can catastrophically impact to facilities and people must to keep in mind to make sediment-related disaster information that can be predicted from rainfall and response of drainage area. Sediment-related disaster information whether sediment-related disaster risk is high or low could be informed in a real time based on rainfall indices by using X-band MP (Multi Parameter) rainfall radar. These system facilities a sophisticated measurement based on rainfall intensity (calculated using the distribution of precipitations and the polarization phase difference) and more sensitive to rain attenuation phenomena. It shows the water storage volume in soil layer with calculation of soil water index (SWI) by using X-band MP rainfall radar data that has been installed at the top of Merapi Mountain (Merapi Museum). Hyetograph shows that surface runoff (S1) has a linear and responsive relationship to rain because the first layer contains direct rainwater. The responsiveness of surface runoff is from the behavior of rainwater in the tank. This simulation is done to show the response of groundwater to a single rainfall event of 1 mm / hour and the movement of water storage in each of the three soil layers (S1, S2, S3). The hydrograph shows the entry of rainwater into the soil layer. Increased extreme lines show responsive lines due to the process of precipitation of rainwater to the soil layers, then reach a peak. After reaching the peak, the current will decrease until it approaches the value of 0 (zero) in 21 days.</em></p><p><strong><em>Keywords :</em></strong><em> x-band, soil water index, short-term rainfall, long-term rainfall,intesity</em></p><p align="center"><strong>ABSTRAK</strong></p><p><em>Bencana sedimen adalah bencana besar yang dapat berdampak bencana terhadap fasilitas dan masyarakat maka dari itu dibutuhkan informasi bencana sedimen yang dapat diprediksi dari curah hujan dan respon daerah drainase.</em> <em>Informasi bencana sedimen pada snakeline mengenai risiko bencana sedimen tinggi atau rendah dapat diinformasikan secara real-time berdasarkan indeks curah hujan dengan menggunakan radar X-band MP (Multi Parameter). Fasilitas sistem ini merupakan pengukuran yang canggih berdasarkan intensitas curah hujan (dihitung dengan menggunakan distribusi presipitasi dan perbedaan fase polarisasi) dan lebih sensitif terhadap fenomena redaman hujan.  Ini menunjukkan volume penyimpanan air di lapisan tanah dengan perhitungan indeks air tanah (SWI) dengan menggunakan data radar curah hujan X-band MP yang telah dipasang di puncak Gunung Merapi (Museum Merapi). Hyetograph menunjukkan bahwa limpasan permukaan (S1) memiliki hubungan linear dan responsif terhadap hujan karena lapisan pertama berisi air hujan langsung. Daya tanggap limpasan permukaan berasal dari perilaku air hujan di dalam tangki. Simulasi ini dilakukan untuk menunjukkan respon air tanah terhadap kejadian curah hujan tunggal 1 mm / jam dan pergerakan penyimpanan air di masing-masing dari tiga lapisan tanah (S1, S2, S3). Hidrograf menunjukkan masuknya air hujan ke lapisan tanah. Peningkatan garis ekstrem menunjukkan garis responsif akibat proses pengendapan air hujan ke lapisan tanah, kemudian mencapai puncaknya. Setelah mencapai puncak, arus akan berkurang hingga mendekati nilai 0 (nol) dalam 21 hari.</em></p><strong><em>Kata kunci :</em></strong><em> x-band, soil water index, hujan jangka pendek, hujan jangka panjang, intensitas</em>


2018 ◽  
Vol 146 (8) ◽  
pp. 2483-2502 ◽  
Author(s):  
Howard B. Bluestein ◽  
Kyle J. Thiem ◽  
Jeffrey C. Snyder ◽  
Jana B. Houser

Abstract This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers–Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind.


2012 ◽  
Vol 204-208 ◽  
pp. 1830-1833
Author(s):  
Jing Zhou ◽  
Xi Ming Liu ◽  
Xian Li Qin ◽  
Shu Ren Xing

Freeze roadway cooling technology is delivering cold quantity to cooling underground face by storage cooling energy in strata, and the effect of storaging cold is critical. The geographical position and geological condition of coal mine in Heilongjiang Province has remarkable characteristics. The feasibility of freeze roadway cooling measure was demonstrated on temperature, geothermal, constant temperature strata and frozen soil layer, etc. by analyzed its advantage adequately. The measure provides a new idea which suits the native situation for prevent the heat-harm in coal mine, it also has the realistic reference value and is worth popularizing.


2006 ◽  
Vol 23 (9) ◽  
pp. 1195-1205 ◽  
Author(s):  
V. Chandrasekar ◽  
S. Lim ◽  
E. Gorgucci

Abstract To design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to develop that dataset is through theoretical models. This paper presents a methodology to generate realistic range profiles of radar variables at attenuating frequencies, such as X band, for rain medium. Fundamental microphysical properties of precipitation, namely, size and shape distribution information, are used to generate realistic profiles of X band starting with S-band observation. Conditioning the simulation from S band maintains the natural distribution of rainfall microphysical parameters. Data from the Colorado State University’s University of Chicago–Illinois State Water Survey (CHILL) radar and the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-POL) are used to simulate X-band radar variables. Three procedures to simulate the radar variables and sample applications are presented.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 165 ◽  
Author(s):  
Ratih Indri Hapsari ◽  
Gerard Aponno ◽  
Rosa Andrie Asmara ◽  
Satoru Oishi

Rainfall-triggered debris flow has caused multiple impacts to the environment. It. is regarded as the most severe secondary hazards of volcanic eruption. However, limited access to the active volcano slope restricts the ground rain measurement as well as the direct delivery of risk information. In this study, an integrated information system is proposed for volcanic-related disaster mitigation under the framework of X-Plore/X-band Polarimetric Radar for Prevention of Water Disaster. In the first part, the acquisition and processing of high-resolution X-band dual polarimetric weather/X-MP radar data in real-time scheme for demonstrating the disaster-prone region are described. The second part presents the design of rainfall resource database and extensive maps coverage of predicted hazard information in GIS web-based platform accessible both using internet and offline. The proposed platform would be useful for communicating the disaster risk prediction based on weather radar in operational setting.  


Author(s):  
N. V. Rodionova

The paper deals with the distinction between thawed and frozen soils in the upper 5 cm layer for two stations in Russia: Belaya Gora (Yakutia) 68.5° N and Anadyr (Chukotka) 64.78° N — by using Sentinel 1 C-band radar data for the period of 2014–2016 years. Determination of the frozen/thawed soil state is carried out in three ways: 1) by multi-temporal radar data on the basis of a significant in 3–5 dB difference in the backscatter coefficient σ0 in the transition of freezing/thawing soil state, 2) by finding the threshold value of σ0 at which the temperature in the upper soil layer falls below 00С, 3) by texture features for one- channel images. The graphs of the AFI (air freezing index) for the period of 2012-2018 with trends are constructed based on the archive data of air temperature for the study areas.


2006 ◽  
Vol 23 (7) ◽  
pp. 952-963 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Robert Cifelli ◽  
Patrick C. Kennedy ◽  
Steven W. Nesbitt ◽  
Steven A. Rutledge ◽  
...  

Abstract A comparative study of the use of X- and S-band polarimetric radars for rainfall parameter retrievals is presented. The main advantage of X-band polarimetric measurements is the availability of reliable specific differential phase shift estimates, KDP, for lighter rainfalls when phase measurements at the S band are too noisy to produce usable KDP. Theoretical modeling with experimental raindrop size distributions indicates that due to some non-Rayleigh resonant effects, KDP values at a 3.2-cm wavelength (X band) are on average a factor of 3.7 greater than at 11 cm (S band), which is a somewhat larger difference than simple frequency scaling predicts. The non-Rayleigh effects also cause X-band horizontal polarization reflectivity, Zeh, and differential reflectivity, ZDR, to be larger than those at the S band. The differences between X- and S-band reflectivities can exceed measurement uncertainties for Zeh starting approximately at Zeh &gt; 40 dBZ, and for ZDR when the mass-weighted drop diameter, Dm, exceeds about 2 mm. Simultaneous X- and S-band radar measurements of rainfall showed that consistent KDP estimates exceeding about 0.1° km−1 began to be possible at reflectivities greater than ∼26–30 dBZ while at the S band such estimates can generally be made if Zeh &gt; ∼35–39 dBZ. Experimental radar data taken in light-to-moderate stratiform rainfalls with rain rates R in an interval from 2.5 to 15 mm h−1 showed availability of the KDP-based estimates of R for most of the data points at the X band while at the S band such estimates were available only for R greater than about 8–10 mm h−1. After correcting X-band differential reflectivity measurements for differential attenuation, ZDR measurements at both radar frequency bands were in good agreement with each other for Dm &lt; 2 mm, which approximately corresponds to ZDR ≈ 1.6 dB. The ZDR-based retrievals of characteristic raindrop sizes also agreed well with in situ disdrometer measurements.


2021 ◽  
Author(s):  
Manolis G. Grillakis

&lt;p&gt;Remote sensing has proven to be an irreplaceable tool for monitoring soil moisture. The European Space Agency (ESA), through the Climate Change Initiative (CCI), has provided one of the most substantial contributions in the soil water monitoring, with almost 4 decades of global satellite derived and homogenized soil moisture data for the uppermost soil layer. Yet, due to the inherent limitations of many of the remote sensors, only a limited soil depth can be monitored. To enable the assessment of the deeper soil layer moisture from surface remotely sensed products, the Soil Water Index (SWI) has been established as a convolutive transformation of the surface soil moisture estimation, under the assumption of uniform hydraulic conductivity and the absence of transpiration. The SWI uses a single calibration parameter, the T-value, to modify its response over time.&lt;/p&gt;&lt;p&gt;Here the Soil Water Index (SWI) is calibrated using ESA CCI soil moisture against in situ observations from the International Soil Moisture Network and then use Artificial Neural Networks (ANNs) to find the best physical soil, climate, and vegetation descriptors at a global scale to regionalize the calibration of the T-value. The calibration is then used to assess a root zone related soil moisture for the period 2001 &amp;#8211; 2018.&lt;/p&gt;&lt;p&gt;The results are compared against the European Centre for Medium-Range Weather Forecasts, ERA5 Land reanalysis soil moisture dataset, showing a good agreement, mainly over mid-latitudes. The results indicate that there is added value to the results of the machine learning calibration, comparing to the uniform T-value. This work contributes to the exploitation of ESA CCI soil moisture data, while the produced data can support large scale soil moisture related studies.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document