Precipitation analysis by X-band MP radar data using Google Earth

Author(s):  
Masahiro Nishio ◽  
Masatoshi Mori
2018 ◽  
Vol 146 (8) ◽  
pp. 2483-2502 ◽  
Author(s):  
Howard B. Bluestein ◽  
Kyle J. Thiem ◽  
Jeffrey C. Snyder ◽  
Jana B. Houser

Abstract This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers–Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind.


2006 ◽  
Vol 23 (9) ◽  
pp. 1195-1205 ◽  
Author(s):  
V. Chandrasekar ◽  
S. Lim ◽  
E. Gorgucci

Abstract To design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to develop that dataset is through theoretical models. This paper presents a methodology to generate realistic range profiles of radar variables at attenuating frequencies, such as X band, for rain medium. Fundamental microphysical properties of precipitation, namely, size and shape distribution information, are used to generate realistic profiles of X band starting with S-band observation. Conditioning the simulation from S band maintains the natural distribution of rainfall microphysical parameters. Data from the Colorado State University’s University of Chicago–Illinois State Water Survey (CHILL) radar and the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-POL) are used to simulate X-band radar variables. Three procedures to simulate the radar variables and sample applications are presented.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 165 ◽  
Author(s):  
Ratih Indri Hapsari ◽  
Gerard Aponno ◽  
Rosa Andrie Asmara ◽  
Satoru Oishi

Rainfall-triggered debris flow has caused multiple impacts to the environment. It. is regarded as the most severe secondary hazards of volcanic eruption. However, limited access to the active volcano slope restricts the ground rain measurement as well as the direct delivery of risk information. In this study, an integrated information system is proposed for volcanic-related disaster mitigation under the framework of X-Plore/X-band Polarimetric Radar for Prevention of Water Disaster. In the first part, the acquisition and processing of high-resolution X-band dual polarimetric weather/X-MP radar data in real-time scheme for demonstrating the disaster-prone region are described. The second part presents the design of rainfall resource database and extensive maps coverage of predicted hazard information in GIS web-based platform accessible both using internet and offline. The proposed platform would be useful for communicating the disaster risk prediction based on weather radar in operational setting.  


2006 ◽  
Vol 23 (7) ◽  
pp. 952-963 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Robert Cifelli ◽  
Patrick C. Kennedy ◽  
Steven W. Nesbitt ◽  
Steven A. Rutledge ◽  
...  

Abstract A comparative study of the use of X- and S-band polarimetric radars for rainfall parameter retrievals is presented. The main advantage of X-band polarimetric measurements is the availability of reliable specific differential phase shift estimates, KDP, for lighter rainfalls when phase measurements at the S band are too noisy to produce usable KDP. Theoretical modeling with experimental raindrop size distributions indicates that due to some non-Rayleigh resonant effects, KDP values at a 3.2-cm wavelength (X band) are on average a factor of 3.7 greater than at 11 cm (S band), which is a somewhat larger difference than simple frequency scaling predicts. The non-Rayleigh effects also cause X-band horizontal polarization reflectivity, Zeh, and differential reflectivity, ZDR, to be larger than those at the S band. The differences between X- and S-band reflectivities can exceed measurement uncertainties for Zeh starting approximately at Zeh > 40 dBZ, and for ZDR when the mass-weighted drop diameter, Dm, exceeds about 2 mm. Simultaneous X- and S-band radar measurements of rainfall showed that consistent KDP estimates exceeding about 0.1° km−1 began to be possible at reflectivities greater than ∼26–30 dBZ while at the S band such estimates can generally be made if Zeh > ∼35–39 dBZ. Experimental radar data taken in light-to-moderate stratiform rainfalls with rain rates R in an interval from 2.5 to 15 mm h−1 showed availability of the KDP-based estimates of R for most of the data points at the X band while at the S band such estimates were available only for R greater than about 8–10 mm h−1. After correcting X-band differential reflectivity measurements for differential attenuation, ZDR measurements at both radar frequency bands were in good agreement with each other for Dm < 2 mm, which approximately corresponds to ZDR ≈ 1.6 dB. The ZDR-based retrievals of characteristic raindrop sizes also agreed well with in situ disdrometer measurements.


2020 ◽  
Vol 148 (5) ◽  
pp. 1779-1803 ◽  
Author(s):  
Roger M. Wakimoto ◽  
Zachary Wienhoff ◽  
Howard B. Bluestein ◽  
David J. Bodine ◽  
James M. Kurdzo

Abstract A detailed damage survey is combined with high-resolution mobile, rapid-scanning X-band polarimetric radar data collected on the Shawnee, Oklahoma, tornado of 19 May 2013. The focus of this study is the radar data collected during a period when the tornado was producing damage rated EF3. Vertical profiles of mobile radar data, centered on the tornado, revealed that the radar reflectivity was approximately uniform with height and increased in magnitude as more debris was lofted. There was a large decrease in both the cross-correlation coefficient (ρhv) and differential radar reflectivity (ZDR) immediately after the tornado exited the damaged area rated EF3. Low ρhv and ZDR occurred near the surface where debris loading was the greatest. The 10th percentile of ρhv decreased markedly after large amounts of debris were lofted after the tornado leveled a number of structures. Subsequently, ρhv quickly recovered to higher values. This recovery suggests that the largest debris had been centrifuged or fallen out whereas light debris remained or continued to be lofted. Range–height profiles of the dual-Doppler analyses that were azimuthally averaged around the tornado revealed a zone of maximum radial convergence at a smaller radius relative to the leading edge of lofted debris. Low-level inflow into the tornado encountering a positive bias in the tornado-relative radial velocities could explain the existence of the zone. The vertical structure of the convergence zone was shown for the first time.


2018 ◽  
Vol 146 (8) ◽  
pp. 2469-2481 ◽  
Author(s):  
Andrew A. Rosenow ◽  
Kenneth Howard ◽  
José Meitín

Abstract On 24 January 2017, a convective snow squall developed in the San Luis Valley of Colorado. This squall produced rapidly varying winds at San Luis Valley airport in Alamosa, Colorado, with gusts up to 12 m s−1, and an associated visibility drop to 1.4 km from unlimited in less than 10 min. This snow squall was largely undetected by the operational WSR-88D network because of the Sangre de Cristo Range of the Rocky Mountains lying between the valley and the nearest WSR-88D in Pueblo, Colorado. This study presents observations of the snow squall from the X-band NOAA X-Pol radar, which was deployed in the San Luis Valley during the event. These observations document the squall developing from individual convective cells and growing upscale into a linear squall, with peak radial velocities of 15 m s−1. The environment conducive to the development of this snow squall is examined using data from the High-Resolution Rapid Refresh model, which shows an environment unstable to ascending surface-based parcels, with surface-based convective available potential energy (SBCAPE) values up to 600 J kg−1 in the San Luis Valley. The mobile radar data are integrated into the Multi-Radar Multi-Sensor (MRMS) mosaic to illustrate both the large improvement in detectability of this event gained from a gap-filling radar as well as the capability of MRMS to incorporate data from new radars designed to fill gaps in the current radar network.


2016 ◽  
Vol 8 (12) ◽  
pp. 989 ◽  
Author(s):  
Michael Schmidt ◽  
John Carter ◽  
Grant Stone ◽  
Peter O’Reagain

Sign in / Sign up

Export Citation Format

Share Document