scholarly journals Lithofacies Analysis of the Tista River Deposits, Rangpur, Bangladesh

2021 ◽  
Vol 38 (2) ◽  
pp. 3-14
Author(s):  
Sudip Saha ◽  
Mrinal Kanti Roy ◽  
A.H.M. Selim Reza

Eight (8) distinct lithofacies within the fluviatile reach of the Tista River have been recognized by the detailed study of the sediments as exposed along the river bank and river bars. Genetically, the matrix-supported conglomerate (Gms), massive sand (Sm), Trough cross stratified sand (St), planar cross stratified sand (Sp), ripple laminated sand (Sr) comprise the channel deposits whereas, the ripple laminated sand (Sr), parallel laminated sand (Sh), clay with silt (Fl) and massive Clay (Fm) represent overbank fine deposits. The channel deposits were laid down under relatively high energy conditions compared to the sediments of overbank fines. The stratigraphic succession is indicative of fining upward sequence. The dominance of coarser-grained sediments at the base of the lithostratigraphic unit, especially the matrix supported conglomerate (Gms) suggests that the deposition took place in the proximal part of the Tista Fan, which might be of glacial origin. Massive clay (Fm) is the final stage of vertical aggradations in the overbanks, possibly in the floodplains, flood basins, and back swamps when the velocity of the transporting medium was virtually lean that promotes the deposition of clay materials from suspension.  The growth of cracks in the sedimentary succession is resulting from the compaction of the sediments and/or instant change in the paleoslope direction. The unimodal distribution of paleocurrent data with high mode value indicates mainly unidirectional sediment transport. The study of the lithofacies manifests that the deposits are produced by the braided river and debris flows. The modification of the depositional pattern from debris flow to overbank fines discloses the change of climatic condition in the Quaternary period.

2021 ◽  
pp. 1-17
Author(s):  
Jef Vandenberghe ◽  
Xun Yang ◽  
Xianyan Wang ◽  
Shejiang Wang ◽  
Huayu Lu

Abstract This paper describes an assemblage of diverse floodplain facies of reworked loess (facies b, c) in a Middle Pleistocene monsoonal setting of the Hanzhong Basin, central China. The vertical and lateral sedimentary sequences show changing energy conditions. Apart from the highest energy in the channel facies (facies a), a relatively high energy floodplain environment (facies b) prevailed in waterlogged conditions, with small, laterally migrating (sub)channels. Facies b generally interfingers with aggrading horizontal sheets of overbank deposits in alluvial pools and swamps in a floodplain with much lower energy (facies c), in which phases of stability (soil formation) occasionally interrupted overbank deposition. Reworked loess forms the main part of the floodplain deposits. The paleosols are considered to have been formed under low hydrodynamic conditions in an interglacial environment. These interglacial conditions follow the commonly assumed glacial conditions of channel facies a. The sedimentary successions in the floodplain show a recurrent composition and cyclicity between wet and dry floodplain sedimentation terminated by stability with soil formation. The cyclic rhythm of stacked high- and low-energy floodplain sediments is attributed to varied intensity of different hydrodynamic flooding events that may have been due to changing monsoonal rainfall or simple intrinsic fluvial behavior.


2016 ◽  
Vol 869 ◽  
pp. 277-282
Author(s):  
Moisés Luiz Parucker ◽  
César Edil da Costa ◽  
Viviane Lilian Soethe

Solid lubricants have had good acceptance when used in problem areas where the conventional lubricants cannot be applied: under extreme temperatures, high charges and in chemically reactive environments. In case of materials manufactured by powder metallurgy, particles of solid lubricants powders can be easily incorporated to the matrix volume at the mixing stage. In operation, this kind of material provides a thin layer of lubricant that prevents direct contact between the surfaces. The present study aimed at incorporating particles of second phase lubricant (h-BN) into a matrix of nickel by high-energy ball milling in order to obtain a self-lubricating composite with homogeneous phase distribution of lubricant in the matrix. Mixtures with 10 vol.% of h-BN varying the milling time of 5, 10, 15 and 20 hours and their relationship ball/powder of 20:1 were performed. The effect of milling time on the morphology and microstructure of the powders was studied by X-ray diffraction, SEM and EDS. The composite powders showed reduction in average particle size with increasing milling time and the milling higher than 5 hours resulted in equiaxial particles and the formation of nickel boride.


Author(s):  
Zhengwei Lin ◽  
Qinghong Zhang ◽  
Gongliang Wang ◽  
Jie Mao ◽  
Martin Hoch ◽  
...  

ABSTRACT Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4672-4682 ◽  
Author(s):  
Hyun-Kyong Kim ◽  
Mi-Seon Shin ◽  
Byung-Soo Youn ◽  
Churl Namkoong ◽  
So Young Gil ◽  
...  

Progranulin (PGRN) is a secreted glycoprotein with multiple biological functions, including modulation of wound healing and inflammation. Hypothalamic PGRN has been implicated in the development of sexual dimorphism. In the present study, a potential role for PGRN in the hypothalamic regulation of appetite and body weight was investigated. In adult rodents, PGRN was highly expressed in periventricular tanycytes and in hypothalamic neurons, which are known to contain glucose-sensing machinery. Hypothalamic PGRN expression levels were decreased under low-energy conditions (starvation and 2-deoxy-D-glucose administration) but increased under high-energy condition (postprandially). Intracerebrovetricular administration of PGRN significantly suppressed nocturnal feeding as well as hyperphagia induced by 2-deoxyglucose, neuropeptide Y, and Agouti-related peptide. Moreover, the inhibition of hypothalamic PGRN expression or action increased food intake and promoted weight gain, suggesting that endogenous PGRN functions as an appetite suppressor in the hypothalamus. Investigation of the mechanism of action revealed that PGRN diminished orexigenic neuropeptide Y and Agouti-related peptide production but stimulated anorexigenic proopiomelanocortin production, at least in part through the regulation of hypothalamic AMP-activated protein kinase. Notably, PGRN was also expressed in hypothalamic microglia. In diet-induced obese mice, microglial PGRN expression was increased, and the anorectic response to PGRN was blunted. These findings highlight a physiological role for PGRN in hypothalamic glucose-sensing and appetite regulation. Alterations in hypothalamic PGRN production or action may be linked to appetite dysregulation in obesity.


2021 ◽  
pp. SP523-2021-76
Author(s):  
Robert W. Dalrymple

AbstractThis study reviews the morphology, hydrodynamics and sedimentology of 33 modern straits, including examples from diverse tectonic and climatic settings. Strait morphology ranges from short, simple straits to long, tortuous passages many 100s of kilometers long; depths range from 10 m to >1 km. The morphological building block of strait sedimentation is a constriction flanked by open basins; a single strait can contain one or several of these. Currents accelerate through the constrictions and decelerate in the basins, leading to a spatial alternation of high- and low-energy conditions. Currents in a strait can be classified as either ‘persistent’ (oceanic currents or density-driven circulation) or ‘intermittent’ (tidally or meteorologically generated currents). Constrictions tend to be bedload partings, with the development of transport paths that diverge outward. Deposition occurs where the flow decelerates, generating paired subaqueous ‘constriction-related deltas’ that can be of unequal size. Cross-bedding predominates in high-energy settings; muddy sediment waves and contourite drifts are present in some straits. In shallow straits that were exposed during the sea-level lowstand, strait deposits typically occur near or at the maximum flooding surface, and can overlie estuarine and fluvial deposits. The most energetic deposits need not occur at the time of maximum inundation.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5746061


2016 ◽  
Vol 18 (1) ◽  
pp. 19-31
Author(s):  
Florin TĂTUI

Longshore sandbars along wave-dominated sandy beaches are important for beach-dune system protection during storms. Our analysis is based on 6 years of seasonal and annual bathymetric surveys along 16 km of erosive, stable and accumulative low-lying non-tidal beaches northward of Sf. Gheorghe arm mouth (Danube Delta – Romanian Black Sea coast). Our results show significant correlations established between longshore sandbar crest positions and morphology with more intense coupling between the inner and outer sandbar sub-systems during high-energy conditions and more frequent along the northern erosive sector in comparison with the southern/central accumulative/stable ones. There is a good connection between the long-term shoreline mobility and sandbars offshore migration rates along different sectors of the study area, with faster sandbars movement and shorter cycle return periods along the northern erosive sector in comparison with the central (stable) and southern (accretionary) sectors. The longshore variations of the nearshore slope are the main driver of the relationship between long-term sandbars dynamics and shoreline variability along the study site.


2020 ◽  
Vol 21 (1) ◽  
pp. 35
Author(s):  
Marzuki Silalahi ◽  
Bernadus Bandriyana ◽  
Arbi Dimyati ◽  
Bambang Sugeng ◽  
Syahfandi Ahda ◽  
...  

Microstructure and phase distribution of innovative Oxide Dispersion Strengthened (ODS) steel based on Fe-Cr-ZrO2 particularly for application at high temperature reactor with variation of Cr content was analysed. The alloy was synthesized with Cr composition variation of  15, 20 and 25 wt.% Cr, while zirconia dispersoid kept constant at 0.50 wt.%. The samples was synthesized by mechanical alloying comprising of high energy milling for 3 hours followed by vibrated compression with iso-static load at 20 ton. The final consolidation was performed via sintering process for 4 minutes using the Arc Plasma Sintering (APS) technique, a new method developed in BATAN especially for synthesizing high temperature materials. The samples were then characterized by means of scanning electron microscopy (SEM) with energy dispersed X-ray (EDX) analysis capability and X-ray diffraction. The mechanical property of hardness was measured using standard Vickers micro hardness tester to confirmed the microstructure analysis.  The results show that the microstructure of the ODS alloy samples in all variation of Cr content consists generally of cubic Fe-Cr matrix phase with small of porosity and  Zirconia particles distributed homogenously in and around the matrix grains. The achievable hardness was between 142 and 184 HVN dependent consistently on Cr content in which Cr element may cause grain refining that in turn increase the hardness.


2002 ◽  
Vol 749 ◽  
Author(s):  
Michael Yakimov ◽  
Vadim Tokranov ◽  
Alex Katnelson ◽  
Serge Oktyabrsky

ABSTRACTWe have studied the first phases of post-growth evolution of InAs quantum dots (QDs) using in-situ Auger electron spectroscopy in conjunction with Reflection High Energy Electron Diffraction (RHEED). Direct evidence for InAs intermixing with about 6ML (monolayers) of the matrix material is found from Auger signal behavior during MBE overgrowth of InAs nanostructures. Re-establishment of 2D growth mode by overgrowth with GaAs or AlAs was monitored in single-layer and multi-layer QD structures using RHEED. Decay process of InAs QDs on the surface is found to have activation energy of about 1.1 eV that corresponds to In intermixing with the matrix rather than evaporation from the surface.


2021 ◽  
pp. SP514-2021-10
Author(s):  
Matías Reolid ◽  
Mohamed Soussi ◽  
Jesús Reolid ◽  
Wolfgang Ruebsam ◽  
Ilef Belhaj Taher ◽  
...  

AbstractThe flooding of the Lower Jurassic shelf in the North Gondwana Palaeomargin during the early Toarcian occurred on a fragmented and irregular topography affected by differential subsidence—due to the activity of listric faults along the North-South Axis of Tunisia—that favoured lateral changes in facies and thickness at a kilometric scale. The onset of Toarcian sedimentation (Polymorphum ammonite Zone, NJT5c nannofossil Subzone) in two adjacent sections was characterised by the deposition of limestones under high-energy conditions. The Châabet El Attaris section was located in a depressed sub-basin, and recorded restricted environmental conditions owing to water stagnation and an oxygen-depleted sea-bottom. Therefore, dark mudstones developed, with increased TOC contents and enhanced accumulation of redox-sensitive elements. The sedimentation of limestones bearing gutter cast structures is related to gravity flows probably linked to storm activities. These processes favoured the remobilization of sediments at the sea floor, as well as oxygen input to bottom waters, as shown by the record of trace fossils including Zoophycos, Ophiomorpha, and secondarily, Chondrites and Diplocraterion. The thinly interbedded dark mudstones are locally rich in thin-shelled bivalves that re-colonised the sea bottom after the sedimentation of these high-energy deposits, and subsequently underwent mass mortality related to the return of oxygen-depleted conditions. The Kef El Hassine section is located in the upper part of a tilted, less subsident block, as indicated by its reduced thickness compared with the Châabet El Attaris section; the absence of dark mudstones implies oxic conditions. The Polymorphum Zone consists of limestones showing evidence of sedimentation under high-energy conditions, along with hardgrounds. The occurrence of Zoophycos (deep-tiers) in the upper part of some limestone beds of the Polymorphum Zone is linked to minor erosive processes. The top of the high-energy sequence—below the deposits of a marly interval corresponding to the Levisoni Zone—is interpreted as a hardground given the high content of belemnites and Arenicolites, some of them boring on the eroded Zoophycos and Thalassinoides. This study shows that the sedimentary expression of the Jenkyns Event is not uniform across Tunisia, supporting the importance of local conditions in determining the development of anoxic conditions.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5510162


2020 ◽  
Vol 6 (10) ◽  
pp. eaaz3112 ◽  
Author(s):  
Huadong Yuan ◽  
Jianwei Nai ◽  
He Tian ◽  
Zhijin Ju ◽  
Wenkui Zhang ◽  
...  

The lithium metal anode (LMA) is considered as a promising star for next-generation high-energy density batteries but is still hampered by the severe growth of uncontrollable lithium dendrites. Here, we design “spansules” made of NaMg(Mn)F3@C core@shell microstructures as the matrix for the LMA, which can offer a long-lasting release of functional ions into the electrolyte. By the assistance of cryogenic transmission electron microscopy, we reveal that an in situ–formed metal layer and a unique LiF-involved bilayer structure on the Li/electrolyte interface would be beneficial for effectively suppressing the growth of lithium dendrites. As a result, the spansule-modified anode affords a high Coulombic efficiency of 98% for over 1000 cycles at a current density of 2 mA cm−2, which is the most stable LMA reported so far. When coupling this anode with the Li[Ni0.8Co0.1Mn0.1]O2 cathode, the practical full cell further exhibits highly improved capacity retention after 500 cycles.


Sign in / Sign up

Export Citation Format

Share Document