scholarly journals Changing Tropical Estuarine Sedimentary Environments with Time and Metals Contamination, Cest Coast of India

2021 ◽  
Vol 38 (2) ◽  
pp. 63-78
Author(s):  
Ganapati Narayan Nayak

Estuaries are one of the major sub-environments of the coastal zone wherein freshwaters interact and mix with saline waters, and facilitate deposition of finer sediments, organic matter, and metals. Intertidal mudflat and mangrove sediment cores collected from estuaries along the central west coast of India were investigated for various sedimentological and geochemical parameters to understand the changes in the sedimentary depositional environments and various factors influencing the processes. Additionally, estuarine biota was examined to understand the bioaccumulation of metals with respect to bioavailability. The results indicated considerable changes in the depositional environments with time owing to sea-level changes; geomorphology of the estuaries; rainfall and river runoff; anthropogenic activities including construction of dams and bridges. The sediments in the estuaries are considerably polluted by metals and pose toxicity risks to the estuarine biota due to high metal bioavailability. Marine gastropods and mangrove plants act as prospective bio-indicators, and the bioremediation potential of mangroves for contaminated sediments was identified. Metal bioaccumulation in edible benthic biota can be harmful to the human health.

1991 ◽  
Vol 48 (3) ◽  
pp. 472-486 ◽  
Author(s):  
James P. Hurley ◽  
David E. Armstrong

Fluxes and concentrations of a phorbins and major algal carotenoids were quantified in sediment trap material and sediment cores from two basins of Trout Lake, Wisconsin (TrDH and TrAB). The basins were chosen to contrast the influence of oxygen content at the sediment–water interface (TrDH, oxic and TrAB, reducing), sediment accumulation rate, and focusing. Pigment diagenesis occurred in both basins, but transformations and destruction were more extensive in TrDH. Although untransformed chlorophyll a was the major phorbin deposited at the sediment surface of both basins (51–64 mol%), pigment destruction, coupled with transition to pheophytin, accounted for substantial losses, especially in oxic TrDH sediments. Fucoxanthin, peridinin, and diadinoxanthin, despite representing > 70% of the deposited carotenoid flux, were substantially degraded or transformed in both basins. However, preservation was relatively high for secondary carotenoids, such as diatoxanthin and β-carotene, and for a major cryptomonad pigment, alloxanthin. Residual profiles in sediments show that pigment sedimentation from the epilimnion and accumulation in the permanent sediments are not directly related and that diagenesis must be considered in interpreting sedimentary pigments.


2003 ◽  
Vol 1 ◽  
pp. 527-541 ◽  
Author(s):  
Anders Ahlberg ◽  
Ulf Sivhed ◽  
Mikael Erlström

In Sweden, Jurassic strata are restricted to Skåne and adjacent offshore areas. Jurassic sedimentary rocks predominantly comprise sandy to muddy siliciclastics, with subordinate coal beds and few carbonate-rich beds. During Mesozoic times, block-faulting took place in the Sorgenfrei– Tornquist Zone, a tectonic zone which transects Skåne in a NW–SE direction. The Jurassic depositional environments in Skåne were thus strongly influenced by uplift and downfaulting, and to some extent by volcanism. Consequently, the sedimentary record reveals evidence of numerous transgressions, regressions and breaks in sedimentation. Relative sea-level changes played a significant role in controlling the facies distribution, as deposition mainly took place in coastal plain to shallow shelf environments. The alluvial deposits in Skåne include floodplain palaeosols, autochthonous coals, overbank sandstones, and stream channel pebbly sandstones. Restricted marine strata comprise intertidal heteroliths with mixed freshwater and marine trace fossil assemblages, and intertidal delta distributary channel sandstones. Shallow marine sediments encompass subtidal and shoreface sandstones with herringbone structures, and bioturbated mudstones with tempestite sandstones. Offshore deposits typically comprise extensively bioturbated muddy sandstones. Floral remains, palaeopedology, clay mineralogy and arenite maturity indicate a warm and humid climate in Skåne throughout the Jurassic, possibly with slightly increasing aridity towards the end of the period. Most Jurassic strata in Skåne have been subjected to mild burial diagenesis, and the petroleum generative window has rarely been reached.


Geologos ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 93-111
Author(s):  
Amrollah Safari ◽  
Hossein Ghanbarloo ◽  
Parisa Mansoury ◽  
Mehran Mohammadian Esfahani

AbstractDuring the Rupelian–Chattian, the Qom Basin (northern seaway basin) was located between the Paratethys in the north and the southern Tethyan seaway in the south. The Oligocene deposits (Qom Formation) in the Qom Basin have been interpreted for a reconstruction of environmental conditions during deposition, as well as of the influence of local fault activities and global sea level changes expressed within the basin. We have also investigated connections between the Qom Basin and adjacent basins. Seven microfacies types have been distinguished in the former. These microfacies formed within three major depositional environments, i.e., restricted lagoon, open lagoon and open marine. Strata of the Qom Formation are suggested to have been formed in an open-shelf system. In addition, the deepening and shallowing patterns noted within the microfacies suggest the presence of three third-order sequences in the Bijegan area and two third-order depositional sequences and an incomplete depositional sequence in the Naragh area. Our analysis suggests that, during the Rupelian and Chattian stages, the depositional sequences of the Qom Basin were influenced primarily by local tectonics, while global sea level changes had a greater impact on the southern Tethyan seaway and Paratethys basins. The depositional basins of the Tethyan seaway (southern Tethyan seaway, Paratethys Basin and Qom Basin) were probably related during the Burdigalian to Langhian and early Serravallian.


Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 61-84 ◽  
Author(s):  
M. Thiry ◽  
T. Jacquin

AbstractThe distribution of clay minerals from the N and S Atlantic Cretaceous deep-sea sediments is related to rifting, sea-floor spreading, sea-level variations and paleoceanography. Four main clay mineral suites were identified: two are inherited and indicative of ocean geodynamics, whereas the others result from transformation and authigenesis and are diagnostic of Cretaceous oceanic depositional environments. Illite and chlorite, together with interstratified illite-smectite and smectite occur above the sea-floor basalts and illustrate the contribution of volcanoclastic materials of basaltic origin to the sediments. Kaolinite, with variable amounts of illite, chlorite, smectite and interstratified minerals, indicates detrital inputs from continents near the platform margins. Kaolinite decreases upward in the series due to open marine environments and basin deepening. It may increase in volume during specific time intervals corresponding to periods of falling sea-level during which overall facies regression and erosion of the surrounding platforms occurred. Smectite is the most abundant clay mineral in the Cretaceous deep-sea sediments. Smectite-rich deposits correlate with periods of relatively low sedimentation rates. As paleoweathering profiles and basal deposits at the bottom of Cretaceous transgressive formations are mostly kaolinitic, smectite cannot have been inherited from the continents. Smectite is therefore believed to have formed in the ocean by transformation and recrystallization of detrital materials during early diagenesis. Because of the slow rate of silicate reactions, transformation of clay minerals requires a long residence time of the particles at the water/sediment interface; this explains the relationships between the observed increases in smectite with long-term sea-level rises that tend to starve the basinal settings of sedimentation. Palygorskite, along with dolomite, is relatively common in the N and S Atlantic Cretaceous sediments. It is not detrital because correlative shelf deposits are devoid of palygorskite. Palygorskite is diagnostic of Mg-rich environments and is indicative of the warm and hypersaline bottom waters of the Cretaceous Atlantic ocean.


2021 ◽  
Vol 118 (51) ◽  
pp. e2102629118
Author(s):  
Maodian Liu ◽  
Wenjie Xiao ◽  
Qianru Zhang ◽  
Shengliu Yuan ◽  
Peter A. Raymond ◽  
...  

Anthropogenic activities have led to widespread contamination with mercury (Hg), a potent neurotoxin that bioaccumulates through food webs. Recent models estimated that, presently, 200 to 600 t of Hg is sequestered annually in deep-sea sediments, approximately doubling since industrialization. However, most studies did not extend to the hadal zone (6,000- to 11,000-m depth), the deepest ocean realm. Here, we report on measurements of Hg and related parameters in sediment cores from four trench regions (1,560 to 10,840 m), showing that the world’s deepest ocean realm is accumulating Hg at remarkably high rates (depth-integrated minimum–maximum: 24 to 220 μg ⋅ m−2 ⋅ y−1) greater than the global deep-sea average by a factor of up to 400, with most Hg in these trenches being derived from the surface ocean. Furthermore, vertical profiles of Hg concentrations in trench cores show notable increasing trends from pre-1900 [average 51 ± 14 (1σ) ng ⋅ g−1] to post-1950 (81 ± 32 ng ⋅ g−1). This increase cannot be explained by changes in the delivery rate of organic carbon alone but also need increasing Hg delivery from anthropogenic sources. This evidence, along with recent findings on the high abundance of methylmercury in hadal biota [R. Sun et al., Nat. Commun. 11, 3389 (2020); J. D. Blum et al., Proc. Natl. Acad. Sci. U. S. A. 117, 29292–29298 (2020)], leads us to propose that hadal trenches are a large marine sink for Hg and may play an important role in the regulation of the global biogeochemical cycle of Hg.


1988 ◽  
Vol 3 ◽  
pp. 1-13 ◽  
Author(s):  
Scott L. Wing

Plants can become incorporated into the sediments of virtually any environment, from the oozes of abyssal plains to the silts and sands of delta fronts to brecciated mudflows of volcanic origin. However there is a much narrower range of sedimentary environments in which identifiable plant remains are found in abundance. Generally speaking these are the very shallow or subaerial portions of deltas and estuaries, the channels and floodplains of fluvial systems, lakes of all sizes, ash-falls, and mass-flow deposits such as mudflows. For the purposes of this paper peat swamps are considered as unusual subtypes of deltaic and fluvial environments in which clastic input is low relative to organic accumulation.


2019 ◽  
Vol 498 (1) ◽  
pp. 233-255 ◽  
Author(s):  
Holger Gebhardt ◽  
Samuel O. Akande ◽  
Olabisi A. Adekeye

AbstractThe Benue Trough formed in close relation to the opening of the South Atlantic and experienced sea-level fluctuations of different magnitudes during the Cenomanian to Coniacian interval. We identify depositional environments from outcrop sections and a drilling as control record. Lines of evidence for the interpretation include facies analyses, foraminiferal assemblage composition (P/B-ratio) and the presence of planktonic deep-water indicators. While the analysis of the well data from the Dahomey Basin indicates a continuous deep-water (bathyal) environment, the succession in the Nkalagu area of the Lower Benue Trough evolved in a different and more complex way. Beginning with latest Cenomanian shoreface to shelf deposits, a long period of subsidence lasted until the middle Turonian when pelagic shales and calcareous turbidites were deposited at upper to middle bathyal depths. These conditions continued during late Turonian and Coniacian times. The general deepening trend of the Lower Benue Trough was mainly controlled by tectonic subsidence and was superimposed by eustatic sea-level changes, resulting in periodically changing palaeowater depths. We were able to identify eight sea-level rises and falls that can be attributed to 405 kyr eccentricity cycles. The amplitudes of the sea-level changes were most likely in the range of several tens to a few hundred metres. The deposition of carbonate turbidites at Nkalagu was probably triggered by eustatic sea-level lowstands.


Sign in / Sign up

Export Citation Format

Share Document