scholarly journals DEMULSIFIER SELECTION FOR WATER SEPARATION FROM HEAVY CRUDE OIL EMULSIONS OF IRANIAN OIL FIELD

2021 ◽  
Vol 2(73) (1) ◽  
pp. 62-72
Author(s):  
Fatemeh Yazdanmehr ◽  
Iulian Nistor

"In this study, various demulsifiers have been chosen for emulsion separation from heavy Iranian oil. The 16 types of water and oil based demulsifiers were tested using the selection procedure. Further, the current study assessed the effect of parameters like concentration, water cut and residence time on demulsification. Water emulsion separation has been found to be improved with selected oil-based demulsifiers. The results show that the oil based demulsifiers with a pH between 7-8 and dosage more than 100 ppm have more dehydration efficiency. The efficiency of water-based demulsifiers is lower than that of oil-based demulsifiers. Using the Qualitec-4 software, the possibility of increasing the efficiency of the former was investigated. The results show that the selection of water-based demulsifiers, with pH = 7.76, dose = 100, time = 600, had the best performance. "

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2182-2194 ◽  
Author(s):  
I.. Gavrielatos ◽  
R.. Dabirian ◽  
R.. Mohan ◽  
O.. Shoham

Summary Experimental observations, during oil–production operations, regarding the formation of oil/water emulsions stabilized by nanoparticles and surfactants, are presented. Similarities and differences between the two types of emulsions are discussed on the basis of acquired separation profiles, as well as respective fluid interfacial properties. A state–of–the–art portable dispersion–characterization rig (PDCR) was used to run the experiments, and a surveillance camera was deployed to monitor the emulsion separation kinetics. Commercial–grade mineral oil and distilled water were used as the test fluids. Silica nanoparticles of different wettabilities, as well as surfactants with different hydrophilic-lipophilic balance (HLB) values, were deployed to investigate commonalities/differences between the surfactant– and nanoparticle–stabilized emulsions under ambient–temperature and –pressure conditions. Separation profiles were analyzed, and similar behaviors between the corresponding surfactant and nanoparticle emulsions were observed for the 25%–water–cut case. For higher water cuts, however, the surfactant–stabilized emulsions were tighter than their nanoparticle counterparts, displaying much lower separation rates. In the most severe cases, the surfactants totally inhibited the oil–creaming process and oil remained trapped in the emulsion for several hours. Multiple emulsions (O/W/O) were observed in certain cases [for hydrophilic nanoparticles and lipophilic surfactants (Span® 80)]. On the basis of the aforementioned experimental observations, the presence of surfactants caused more–severe problems for the oil/water–separation process than did the presence of an equal concentration of nanoparticles. Pendant–drop measurements indicated that the surfactants significantly lowered the interfacial tension (IFT) between the oil and water, whereas the nanoparticles did not. Finally, a literature model was used to predict separation profiles for the oil/water dispersions and evaluated by comparing the predictions with the acquired experimental data. Current research sets the benchmark for more–thorough investigations aimed at providing guidelines for a more efficient operation of separators that handle surfactant– or nanoparticle–stabilized emulsions and a better understanding of the related phenomena.


2020 ◽  
Vol 44 (48) ◽  
pp. 20999-21006
Author(s):  
Junda Wu ◽  
Atian Xie ◽  
Jin Yang ◽  
Jiangdong Dai ◽  
Chunxiang Li ◽  
...  

A facile modification of a PVDF membrane using CaCO3 inorganic particles via a layer-by-layer self-assembly process for efficient oil/water separation.


2021 ◽  
Vol 6 (4) ◽  
pp. 154-159
Author(s):  
Nataliya N. Tomchuk ◽  
Ekaterina A. Filatova ◽  
Daria S. Burakova ◽  
Mariam R. Karimova ◽  
Nikolay Yu. Tretyakov ◽  
...  

Introduction. Oil field treatment often makes it necessary to combine different methods of well production treatment, taking into account the development regimes and parameters, produced and injected fluids, technical equipment and economic feasibility. The carried-out complex of laboratory tests is aimed at the creation and subsequent destruction of model systems with specified parameters. The list of the considered methods and the temperature regime of the tests are due to the physicochemical parameters and the field specifics. The purpose of this article is to search for an effective method for the primary treatment of well production after SP-flooding — a highly stable oil-water emulsion, additionally stabilized during pumping by means of an ESP. Materials and methods. The laboratory tests helped to develop an optimal mode of creating an artificial emulsion based on oil from BS10-1 reservoir of the Kholmogorsk field in the Yamalo-Nenets Autonomous Okrug, and a surfactant-polymer cocktail, which simulates well production after SP-flooding. The research tested physicochemical methods of destroying oil-water emulsions, such as their dilution with formation fluids, thermal settling, gravitational separation by centrifugation at RPM = 4000–12000 rpm, introduction of demulsifiers, as well as a combined effect, including all of the above approaches. The tested methods were supplied with the calculated values of the oil phase final water-cut, which allowed us to evaluate the effectiveness of the applied approaches to the destruction of model systems. Results. It has been found that not all of the applied approaches provide the extraction of the estimated amount of oil from emulsion systems with varying degrees of dilution by formation fluids. Satisfactory destruction of the emulsion was achieved after 10–20 min of centrifugation at T = 40 °C and RPM within 4000–8000 rpm. The traditional introduction of industrial demulsifiers into the studied systems without additional influences is ineffective. Conclusion. The optimal level of water cut in the oil phase of ≤5% was achieved after diluting the emulsion with formation fluids, with a combined approach to the destruction of the original and diluted emulsion with formation fluids. In addition, the research showed that it is possible to re-use the extracted SP-composition when controlling its physicochemical parameters, taking into account the effect of the introduced additives.


2020 ◽  
Vol 44 (32) ◽  
pp. 13534-13541
Author(s):  
Xin Gao ◽  
Qiang Ma ◽  
Zhengwei Jin ◽  
Pei Nian ◽  
Zheng Wang

A switchable superlyophobic ZIF-8 membrane can selectively remove oil droplets in oil-in-water emulsions via superoleophobicity and water droplets in water-in-oil emulsions via superhydrophobicity.


2014 ◽  
Vol 2 (30) ◽  
pp. 11830-11838 ◽  
Author(s):  
Xiaoyu Li ◽  
Dan Hu ◽  
Kun Huang ◽  
Chuanfang Yang

Stainless steel felt modified with hierarchically structured coatings and hydrophobicity can achieve a removal efficiency of greater than 99% for oil-in-water emulsion separation.


2021 ◽  
Vol 13 (22) ◽  
pp. 12339
Author(s):  
Bradley Cerff ◽  
David Key ◽  
Bernard Bladergroen

Water plays an essential role in production and refining processes. Many industries that use petrochemicals also require water, especially for cleaning purposes. The wastewaters released by these processes are often rich in petroleum pollutants, which requires significant treatment prior to disposal. The presence of petroleum contaminants in rivers and oceans is a significant threat to human health, as well as to many animal species. A current challenge for most industries and conventional effluent treatment plants is compliance with accepted disposal standards for oil-polluted wastewater. Of particular importance is the processing of dispersed oil in water, as well as oil in water emulsion. Conventional oil and water separation methods for processing oil in water contamination have several technology gaps in terms of applicability and efficiency. The removal and effective processing of dispersed oil and emulsions from oily wastewater is a costly and significant problem. The objective of this paper is to provide a review of the principles associated with oil in water emulsion separation, with the aim of providing a more definitive understanding of the terminology, processes, and methodologies, which will assist the development of a more efficient, innovative and environmentally friendly process for the separation of oily wastewater.


2015 ◽  
Vol 17 (5) ◽  
pp. 3093-3099 ◽  
Author(s):  
Gang Wang ◽  
Yi He ◽  
He Wang ◽  
Lin Zhang ◽  
Quanyao Yu ◽  
...  

A cellulose sponge with properties of superhydrophilicity and under-water superoleophobicity gives 99.94% separation efficiency in oil–water emulsion separation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3434
Author(s):  
Haodong Zhao ◽  
Yali He ◽  
Zhihua Wang ◽  
Yanbao Zhao ◽  
Lei Sun

Emulsified oily wastewater threatens human health seriously, and traditional technologies are unable to separate emulsion containing small sized oil droplets. Currently, oil–water emulsions are usually separated by special wettability membranes, and researchers are devoted to developing membranes with excellent antifouling performance and high permeability. Herein, a novel, simple and low-cost method has been proposed for the separation of emulsion containing surfactants. Polyacrylonitrile (PAN) nanofibers were prepared via electrospinning and then coated by polydopamine (PDA) by using self-polymerization reactions in aqueous solutions. The morphology, structure and oil-in-water emulsion separation properties of the as-prepared PDA@PAN nanofibrous membrane were tested. The results show that PDA@PAN nanofibrous membrane has superhydrophilicity and almost no adhesion to crude oil in water, which exhibits excellent oil–water separation ability. The permeability and separation efficiency of n-hexane/water emulsion are up to 1570 Lm−2 h−1 bar−1 and 96.1%, respectively. Furthermore, after 10 cycles of separation, the permeability and separation efficiency values do not decrease significantly, indicating its good recycling performance. This research develops a new method for preparing oil–water separation membrane, which can be used for efficient oil-in-water emulsion separation.


Author(s):  
G. G. Ismayilov G. G. Ismayilov ◽  
Kh. N. Babirov Kh. N. Babirov

Studies of recent years have determined that oil emulsions are also characterized by a degree of water saturation. Since as water saturation increases (water dispersion in oil), the viscosity of oil emulsions increases significantly. The article investigated the rheological properties of various artificially created emulsions based on rheological complex oils at different temperatures. It has been determined that with an increasing of water cut and water saturation, the viscosity of the system will increase. The article also investigated the effect of changing the water content of oil on its demulsification. It has been found that by purposeful enlargement of water saturation it is possible to significantly reduce the demulsifier consumption while maintaining the efficiency of the dehydrating process. Demulsifier Disolvan-4411 was used for demulsification process. Water-oil emulsions with an initial water cut 22%were dosed with various reagent additives and samples were taken for analyzing. Temperature kept identical during all studies. The effectiveness of water-oil emulsions before and after demulsification with the demulsifier was evaluated by the amount of water dropped from stable water-emulsion in graduated bottles (method Bottle Test). Analyzing the stability of oil emulsions depending on water drop, according consumption of demulsifier we found that 2 factors impact effectiveness of demulsification process: the content of aqueous phase and degree of its dispersion. The result of experimental studies show that with an increase in oil water saturation, consumption of demulsifier decreases. Only with increasing water saturation percentage 70% and higher, the water drop rate exceeds 99%, which meets oil treatment requirements Keywords: oil emulsions, water saturation, viscosity, demulsification, demulsifier, flow curves.


2016 ◽  
Vol 4 (41) ◽  
pp. 15749-15770 ◽  
Author(s):  
Yubing Peng ◽  
Zhiguang Guo

This review provides a brief introduction to filtration membranes with superwetting surfaces applied to oil/water emulsion separation and includes comprehensive discussions about the fabrication methods of each filtration membrane, which is expected to advance the development of biomimetic surface membranes for oil/water emulsion separation.


Sign in / Sign up

Export Citation Format

Share Document