scholarly journals Genetic variations in the sheep <i>SIRT7</i> gene and their correlation with body size traits

2019 ◽  
Vol 62 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Hongwei Xu ◽  
Xiaoyu Zhang ◽  
Rongxin Zang ◽  
Yong Cai ◽  
Xin Cao ◽  
...  

Abstract. As a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase and ADP ribosyl transferase, the silent information regulator 7 (Sirtuin 7, SIRT7) plays a crucial role in regulating the differentiation of adipocytes and myoblasts, lipid metabolism, glucose metabolism, and cellular growth in mammals. It has been hypothesized that SIRT7 affects growth traits in animals; therefore, in this study, the potential insertion/deletion (indel) of genetic variations within the ovine SIRT7 gene and their correlation with sheep growth traits were explored. A total of 709 individuals from five Chinese and Mongolian sheep breeds were analyzed. Two novel indel loci of the sheep SIRT7 gene were detected and were named 5′ promoter region-insertion-7 bp (5′ promoter region-7 bp) and 3′ UTR-insertion-17 bp (3′ UTR-17 bp), respectively. In all of the sheep breeds, frequencies of the 5′ promoter region-7 bp mutation were low, whereas mutations of 3′ UTR-17 bp were high in Tong sheep and Lanzhou fat-tail sheep (LFTS). Furthermore, both indel polymorphisms had significant associations with different growth characteristics (P<0.05). Among these associations, the 3′ UTR-17 bp was highly correlated with rump width in small-tail Han sheep (STHS, rams; P<0.01), and individuals with the ID genotype had better chest depth values than those with the II genotype. In this paper, two novel indels within the sheep SIRT7 gene were identified, and genetic diversity and its effects on body size traits were explored. These findings will potentially provide useful DNA markers for the improvement of economic traits in sheep genetic breeding.

2012 ◽  
Vol 23 (4) ◽  
pp. 291-298 ◽  
Author(s):  
Po-An Tu ◽  
Jen-Wen Shiau ◽  
Shih-Torng Ding ◽  
En-Chung Lin ◽  
Ming-Che Wu ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 681 ◽  
Author(s):  
Xiya Fang ◽  
Zhenyu Lai ◽  
Jie Liu ◽  
Chunlan Zhang ◽  
Shipeng Li ◽  
...  

Nuclear receptor subfamily 6, group A, member 1 (NR6A1), as an important member of the nuclear receptor family, plays an important role in regulating growth, metabolism, and differentiation of embryonic stem cells. For this reason, the NR6A1 gene is considered to be a promising candidate for economic traits and was found to be associated with body size traits in many livestock. However, no studies have been conducted on NR6A1 in donkeys so far. Thus, in this research, we focused on donkeys and identified a 13 bp deletion in intron-1 of the NR6A1 gene among 408 individuals from Guanzhong and Dezhou donkeys using polyacrylamide gel electrophoresis. Three genotypes were identified, namely II, ID, and DD. The association analysis indicated that the body lengths and body heights5f genotype II individuals were significantly different to those of genotype ID in Dezhou donkeys. Conclusively, the 13 bp deletion was associated with growth traits in both Guanzhong donkeys and Dezhou donkeys, indicating that the NR6A1 gene could be a possible candidate gene in marker-assisted selection for donkey breeding programs.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Donglin Ruan ◽  
Zhanwei Zhuang ◽  
Rongrong Ding ◽  
Yibin Qiu ◽  
Shenping Zhou ◽  
...  

Growth traits are important economic traits of pigs that are controlled by several major genes and multiple minor genes. To better understand the genetic architecture of growth traits, we performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic regions and candidate genes that are associated with days to 100 kg (AGE), average daily gain (ADG), backfat thickness (BF) and lean meat percentage (LMP) in a Duroc pig population. In this study, 3945 individuals with phenotypic and genealogical information, of which 2084 pigs were genotyped with a 50 K single-nucleotide polymorphism (SNP) array, were used for association analyses. We found that the most significant regions explained 2.56–3.07% of genetic variance for four traits, and the detected significant regions (>1%) explained 17.07%, 18.59%, 23.87% and 21.94% for four traits. Finally, 21 genes that have been reported to be associated with metabolism, bone growth, and fat deposition were treated as candidate genes for growth traits in pigs. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses implied that the identified genes took part in bone formation, the immune system, and digestion. In conclusion, such full use of phenotypic, genotypic, and genealogical information will accelerate the genetic improvement of growth traits in pigs.


2016 ◽  
Vol 40 ◽  
pp. 399-405 ◽  
Author(s):  
Ivan FedIvan GORLOV ◽  
Nadezhda Vasilevna SHIROKOVA ◽  
Alexander Vasilevich RANDELIN ◽  
Valeriya Nikolaevna VORONKOVA ◽  
Natalya Ivanovna MOSOLOVA ◽  
...  

Author(s):  
Michael Pepke ◽  
Thomas Kvalnes ◽  
Sarah Lundregan ◽  
Winnie Boner ◽  
Pat Monaghan ◽  
...  

Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2=0.04), but with a strong component of maternal inheritance. Variation in TL among individuals was mainly driven by environmental (year) variance, but also brood and parental effects. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by non-genetic environmental effects. We further used genome‐wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL is a lowly heritable, polygenic trait which is strongly affected by environmental conditions in a free-living bird.


2013 ◽  
Vol 64 (1) ◽  
pp. 4858 ◽  
Author(s):  
OE Othman ◽  
SA El-Fiky ◽  
NA Hassan ◽  
ER Mahfouz ◽  
EA Balabel

2009 ◽  
Vol 74 (1) ◽  
pp. 3-29 ◽  
Author(s):  
Douglas W. Bird ◽  
Rebecca Bliege Bird ◽  
Brian F. Codding

By integrating foraging models developed in behavioral ecology with measures of variability in faunal remains, zooarchaeological studies have made important contributions toward understanding prehistoric resource use and the dynamic interactions between humans and their prey. However, where archaeological studies are unable to quantify the costs and benefits associated with prey acquisition, they often rely on proxy measures such as prey body size, assuming it to be positively correlated with return rate. To examine this hypothesis, we analyze the results of 1,347 adult foraging bouts and 649 focal follows of contemporary Martu foragers in Australia's Western Desert. The data show that prey mobility is highly correlated with prey body size and is inversely related to pursuit success—meaning that prey body size is often an inappropriate proxy measure of prey rank. This has broad implications for future studies that rely on taxonomic measures of prey abundance to examine prehistoric human ecology, including but not limited to economic intensification, socioeconomic complexity, resource sustainability, and overexploitation.


2020 ◽  
Vol 100 (3) ◽  
pp. 455-461
Author(s):  
Yifan Liu ◽  
Yunjie Tu ◽  
Ming Zhang ◽  
Jianmin Zou ◽  
Gaige Ji ◽  
...  

The comb is an important secondary sexual characteristic and comb growth traits, such as size and color of the comb, are widely used as indicators in chicken breeding programs. However, the genetic basis for these traits remains mostly unknown. It was found that the chondroadherin-like (CHADL) gene was up-regulated in large combs and was located in reported comb growth quantitative trait loci. In this study, tissue-specific expressions, expression patterns in combs of different ages, and CHADL polymorphisms were analyzed to investigate the relationship between this gene and comb growth traits of Partridge Shank roosters. The results showed that CHADL was more highly expressed in combs than in 10 other tissues, and its expressions in combs tended to gradually increase from the 5-wk-old mark to the 26-wk-old mark. The single-nucleotide polymorphism rs316423539 in the CHADL gene was significantly associated with the comb area and height, whereas rs14822286 was highly correlated with the comb color. Moreover, H1H5, H1H6, and H3H6 were the most advantageous genotype combinations for comb growth traits. Our results might help understand the molecular mechanism of comb growth traits and improve these traits directly by marker assistant selections.


Sign in / Sign up

Export Citation Format

Share Document