scholarly journals Transcriptomic profile of leg muscle during early growth and development in Haiyang yellow chicken

2021 ◽  
Vol 64 (2) ◽  
pp. 405-416
Author(s):  
Xuemei Yin ◽  
Yulin Wu ◽  
Shanshan Zhang ◽  
Tao Zhang ◽  
Genxi Zhang ◽  
...  

Abstract. Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. This study aimed to identify candidate genes involved in chicken growth and development and to investigate the potential regulatory mechanisms of early growth in Haiyang yellow chicken. RNA sequencing was used to compare the transcriptomes of chicken muscle tissues at four developmental stages. In total, 6150 differentially expressed genes (DEGs) (|fold change| ≥ 2; false discovery rate (FDR) ≤ 0.05) were detected by pairwise comparison in female chickens. Functional analysis showed that the DEGs were mainly involved in the processes of muscle growth and development and cell differentiation. Many of the DEGs, such as MSTN, MYOD1, MYF6, MYF5, and IGF1, were related to chicken growth and development. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DEGs were significantly enriched in four pathways related to growth and development: extracellular matrix (ECM)–receptor interaction, focal adhesion, tight junction, and insulin signalling pathways. A total of 42 DEGs assigned to these pathways are potential candidate genes for inducing the differences in growth among the four development stages, such as MYH1A, EGF, MYLK2, MYLK4, and LAMB3. This study identified a range of genes and several pathways that may be involved in regulating early growth.

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1228
Author(s):  
Zhigang Hu ◽  
Junting Cao ◽  
Guangyu Liu ◽  
Huilin Zhang ◽  
Xiaolin Liu

In China, the production for duck meat is second only to that of chicken, and the demand for duck meat is also increasing. However, there is still unclear on the internal mechanism of regulating skeletal muscle growth and development in duck. This study aimed to identity candidate genes related to growth of duck skeletal muscle and explore the potential regulatory mechanism. RNA-seq technology was used to compare the transcriptome of skeletal muscles in black Muscovy ducks at different developmental stages (day 17, 21, 27, 31, and 34 of embryos and postnatal 6-month-olds). The SNPs and InDels of black Muscovy ducks at different growth stages were mainly in “INTRON”, “SYNONYMOUS_CODING”, “UTR_3_PRIME”, and “DOWNSTREAM”. The average number of AS in each sample was 37,267, mainly concentrated in TSS and TTS. Besides, a total of 19 to 5377 DEGs were detected in each pairwise comparison. Functional analysis showed that the DEGs were mainly involved in the processes of cell growth, muscle development, and cellular activities (junction, migration, assembly, differentiation, and proliferation). Many of DEGs were well known to be related to growth of skeletal muscle in black Muscovy duck, such as MyoG, FBXO1, MEF2A, and FoxN2. KEGG pathway analysis identified that the DEGs were significantly enriched in the pathways related to the focal adhesion, MAPK signaling pathway and regulation of the actin cytoskeleton. Some DEGs assigned to these pathways were potential candidate genes inducing the difference in muscle growth among the developmental stages, such as FAF1, RGS8, GRB10, SMYD3, and TNNI2. Our study identified several genes and pathways that may participate in the regulation of skeletal muscle growth in black Muscovy duck. These results should serve as an important resource revealing the molecular basis of muscle growth and development in duck.


2019 ◽  
Vol 99 (4) ◽  
pp. 867-880
Author(s):  
Xiaohong Guo ◽  
Wanfeng Zhang ◽  
Meng Li ◽  
Pengfei Gao ◽  
Wei Hei ◽  
...  

From the perspectives of promoting individual growth and development, increasing pork yield, and improving feed utilization, it is desirable to screen candidate genes underlying pig muscle growth and regulation. In this study, we investigated transcriptome differences at 1, 90, and 180 d of age in Large White and Mashen pigs, characterized differentially expressed genes (DEGs), and screened candidate genes affecting skeletal muscle growth and development. RNA-seq was applied to analyze the transcriptome of the longissimus dorsi (LD) in the two breeds. In LD samples from the two breeds at three growth stages, 7215, 6332, 237, 3935, 3404, and 846 DEGs were obtained for L01 vs. L90, L01 vs. L180, L90 vs. L180, MS01 vs. MS90, MS01 vs. MS180, and MS90 vs. MS180, respectively. Significant tendencies in DEG expression could be grouped into eight profiles. Based on the functional analysis of DEGs, 16 candidate genes related to skeletal muscle growth and development were identified, including PCK2, GNAS, ADCY2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PHKA1, PHKA2, PHKG1, PHKG2, ITPR3, IGF1R, FGFR4, FGF1, and FGF18. The results of this study thus provide a theoretical basis for the mechanisms and candidate genes underlying skeletal muscle development in pigs.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7133 ◽  
Author(s):  
Wen Zhou ◽  
Shiqiang Wang ◽  
Lei Yang ◽  
Yan Sun ◽  
Qian Zhang ◽  
...  

Hypericum perforatum L. is a widely known medicinal herb used mostly as a remedy for depression because it contains high levels of naphthodianthrones, phloroglucinols, alkaloids, and some other secondary metabolites. Quantitative real-time PCR (qRT-PCR) is an optimized method for the efficient and reliable quantification of gene expression studies. In general, reference genes are used in qRT-PCR analysis because of their known or suspected housekeeping roles. However, their expression level cannot be assumed to remain stable under all possible experimental conditions. Thus, the identification of high quality reference genes is essential for the interpretation of qRT-PCR data. In this study, we investigated the expression of 14 candidate genes, including nine housekeeping genes (HKGs) (ACT2, ACT3, ACT7, CYP1, EF1-α, GAPDH, TUB-α, TUB-β, and UBC2) and five potential candidate genes (GSA, PKS1, PP2A, RPL13, and SAND). Three programs—GeNorm, NormFinder, and BestKeeper—were applied to evaluate the gene expression stability across four different plant tissues, four developmental stages and a set of abiotic stress and hormonal treatments. Integrating all of the algorithms and evaluations revealed that ACT2 and TUB-β were the most stable combination in different developmental stages samples and all of the experimental samples. ACT2, TUB-β, and EF1-α were identified as the three most applicable reference genes in different tissues and stress-treated samples. The majority of the conventional HKGs performed better than the potential reference genes. The obtained results will aid in improving the credibility of the standardization and quantification of transcription levels in future expression studies on H. perforatum.


2018 ◽  
Author(s):  
Zhezhi Wang ◽  
Wen Zhou ◽  
Lei Yang ◽  
Yan Sun ◽  
Qian Zhang ◽  
...  

Hypericum perforatum is a widely known medicinal herb used mostly as a remedy for depression because of its abundant secondary metabolites. Quantitative real-time PCR (qRT-PCR) is an optimized method for the efficient and reliable quantification of gene expression studies. In general, reference genes are used in qRT-PCR analysis because of their known or suspected housekeeping roles. However, their expression level cannot be assumed to remain stable under all possible experimental conditions. Thus, the identification of high quality reference genes is very necessary for the interpretation of qRT-PCR data. In this study, we investigated the expression of fourteen candidate genes, including nine housekeeping genes and five potential candidate genes. Additionally, the HpHYP1 gene, belonging to the PR-10 family associated with stress control, was used for validation of the candidate reference genes. Three programs were applied to evaluate the gene expression stability across four different plant tissues, three developmental stages and a set of abiotic stress and hormonal treatments. The candidate genes showed a wide range of Ct values in all samples, indicating that they are differentially expressed. Integrating all of the algorithms and evaluations, ACT2 and TUB-β were the most stable combination overall and for different developmental stages samples. Moreover, ACT2 and EF1-α were considered to be the two most applicable reference genes for different tissues and for stress samples. Majority of the conventional housekeeping genes exhibited better than the potential reference genes. The obtained results will contribute to improving credibility of standardization and quantification of transcription levels in future expression research of H. perforatum.


2020 ◽  
Vol 21 (9) ◽  
pp. 3288
Author(s):  
Yawei Wu ◽  
Juan Xu ◽  
Xiumei Han ◽  
Guang Qiao ◽  
Kun Yang ◽  
...  

To gain more valuable genomic information about betalain biosynthesis, the full-length transcriptome of pitaya pulp from ‘Zihonglong’ (red pulp) and ‘Jinghonglong’ (white pulp) in four fruit developmental stages was analyzed using Single-Molecule Real-Time (SMRT) sequencing corrected by Illumina RNA-sequence (Illumina RNA-Seq). A total of 65,317 and 91,638 genes were identified in ‘Zihonglong’ and ‘Jinghonglong’, respectively. A total of 11,377 and 15,551 genes with more than two isoforms were investigated from ‘Zihonglong’ and ‘Jinghonglong’, respectively. In total, 156,955 genes were acquired after elimination of redundancy, of which, 120,604 genes (79.63%) were annotated, and 30,875 (20.37%) sequences without hits to reference database were probably novel genes in pitaya. A total of 31,169 and 53,024 simple sequence repeats (SSRs) were uncovered from the genes of ‘Zihonglong’ and ‘Jinghonglong’, and 11,650 long non-coding RNAs (lncRNAs) in ‘Zihonglong’ and 11,113 lncRNAs in ‘Jinghonglong’ were obtained herein. qRT-PCR was conducted on ten candidate genes, the expression level of six novel genes were consistent with the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values. In conclusion, we firstly undertook SMRT sequencing of the full-length transcriptome of pitaya, and the valuable resource that was acquired through this sequencing facilitated the identification of additional betalain-related genes. Notably, a list of novel putative genes related to the synthesis of betalain in pitaya fruits was assembled. This may provide new insights into betalain synthesis in pitaya.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weiwei Luo ◽  
Ying Zhou ◽  
Junru Wang ◽  
Xiaomu Yu ◽  
Jingou Tong

Growth, one of the most important traits monitored in domestic animals, is essentially associated with bone development. To date, no large-scale transcriptome studies investigating bone development in bighead carp have been reported. In this study, we applied Isoform-sequencing technology to uncover the entire transcriptomic landscape of the bighead carp (Hypophthalmichthys nobilis) in early growth stage, and obtained 63,873 non-redundant transcripts, 20,907 long non-coding RNAs, and 1,579 transcription factors. A total of 381 alternative splicing events were seen in the frontal and parietal bones with another 784 events simultaneously observed in the vertebral bones. Coupling this to RNA sequencing (RNA-seq) data, we identified 27 differentially expressed unigenes (DEGs) in the frontal and parietal bones and 45 DEGs in the vertebral bones in the fast-growing group of fish, when compared to the slow-growing group of fish. Finally, 15 key pathways and 20 key DEGs were identified and found to be involved in regulation of early growth such as energy metabolism, immune function, and cytoskeleton function and important cellular pathways such as the arginine and proline metabolic pathway (p4ha1), FoxO signaling pathway (sgk1), cell adhesion molecules (b2m, ptprc, and mhcII), and peroxisome proliferator-activated receptor signaling pathway (scd). We established a novel full-length transcriptome resource and combined it with RNA-seq to elucidate the mechanism of genetic regulation of differential growth in bighead carp. The key DEGs identified in this study could fuel further studies investigating associations between growth and bone development and serve as a source of potential candidate genes for marker-assisted breeding programs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mahesh D. Mahendrakar ◽  
Maheshwari Parveda ◽  
P. B. Kavi Kishor ◽  
Rakesh K. Srivastava

Abstract Pearl millet is an important crop for alleviating micronutrient malnutrition through genomics-assisted breeding for grain Fe (GFeC) and Zn (GZnC) content. In this study, we identified candidate genes related to iron (Fe) and zinc (Zn) metabolism through gene expression analysis and correlated it with known QTL regions for GFeC/GZnC. From a total of 114 Fe and Zn metabolism-related genes that were selected from the related crop species, we studied 29 genes. Different developmental stages exhibited tissue and stage-specific expressions for Fe and Zn metabolism genes in parents contrasting for GFeC and GZnC. Results revealed that PglZIP, PglNRAMP and PglFER gene families were candidates for GFeC and GZnC. Ferritin-like gene, PglFER1 may be the potential candidate gene for GFeC. Promoter analysis revealed Fe and Zn deficiency, hormone, metal-responsive, and salt-regulated elements. Genomic regions underlying GFeC and GZnC were validated by annotating major QTL regions for grain Fe and Zn. Interestingly, PglZIP and PglNRAMP gene families were found common with a previously reported linkage group 7 major QTL region for GFeC and GZnC. The study provides insights into the foundation for functional dissection of different Fe and Zn metabolism genes homologs and their subsequent use in pearl millet molecular breeding programs globally.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Xueyan Zhao ◽  
Cheng Wang ◽  
Yanping Wang ◽  
Haichao Lin ◽  
Huaizhong Wang ◽  
...  

Abstract Background Drip loss is a key aspect of meat quality. Transcriptome profiles of muscle with divergent drip loss would offer important insight into the genetic factors responsible for the trait. In this study, drip loss and other meat quality traits of 28 purebred Duroc pigs were measured, muscles of these individuals were RNA sequenced, and eight individuals with extremely low and high drip loss were selected for analyzing their transcriptome differences and identifying potential candidate genes affecting drip loss. Results As a result, 363 differentially expressed (DE) genes were detected in the comparative gene expression analysis, of which 239 were up-regulated and 124 were down-regulated in the low drip loss group. The DE genes were further filtered by correlation analysis between their expression and drip loss values in the 28 Duroc pigs measured and comparison of them with QTLs affecting drip loss. Consequently, of the 363 DE genes, 100 were identified as critical DE genes for drip loss. Functional analysis of these critical DE genes revealed some GO terms (extracellular matrix, cell adhesion mediated by integrin, heterotypic cell-cell adhesion), pathway (ECM-receptor interaction), and new potential candidate genes (TNC, ITGA5, ITGA11, THBS3 and CD44) which played an important role in regulating the variation of drip loss, and deserved to carry further studies to unravel their specific mechanism on drip loss. Conclusions Our study revealed some GO terms, pathways and potential candidate genes affecting drip loss. It provides crucial information to understand the molecular mechanism of drip loss, and would be of help for improving meat quality of pigs.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ram Jagannathan ◽  
Azizi Seixas ◽  
David St-Jules ◽  
Lakshmanan Jagannathan ◽  
April Rogers ◽  
...  

Rationale. Overall validity of existing genetic biomarkers in the diagnosis of obstructive sleep apnea (OSA) remains unclear. The objective of this systematic genetic study is to identify “novel” biomarkers for OSA using systems biology approach. Methods. Candidate genes for OSA were extracted from PubMed, MEDLINE, and Embase search engines and DisGeNET database. The gene ontology (GO) analyses and candidate genes prioritization were performed using Enrichr tool. Genes pertaining to the top 10 pathways were extracted and used for Ingenuity Pathway Analysis. Results. In total, we have identified 153 genes. The top 10 pathways associated with OSA include (i) serotonin receptor interaction, (ii) pathways in cancer, (iii) AGE-RAGE signaling in diabetes, (iv) infectious diseases, (v) serotonergic synapse, (vi) inflammatory bowel disease, (vii) HIF-1 signaling pathway, (viii) PI3-AKT signaling pathway, (ix) regulation lipolysis in adipocytes, and (x) rheumatoid arthritis. After removing the overlapping genes, we have identified 23 candidate genes, out of which >30% of the genes were related to the genes involved in the serotonin pathway. Among these 4 serotonin receptors SLC6A4, HTR2C, HTR2A, and HTR1B were strongly associated with OSA. Conclusions. This preliminary report identifies several potential candidate genes associated with OSA and also describes the possible regulatory mechanisms.


2010 ◽  
Vol 34 (4) ◽  
pp. 521-530 ◽  
Author(s):  
Xi-wu YAN ◽  
Qi WANG ◽  
Yue-huan ZHANG ◽  
Zhong-ming HUO ◽  
Yue ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document