scholarly journals Direct satellite observation of lightning-produced NO<sub>x</sub>

2010 ◽  
Vol 10 (22) ◽  
pp. 10965-10986 ◽  
Author(s):  
S. Beirle ◽  
H. Huntrieser ◽  
T. Wagner

Abstract. Lightning is an important source of NOx in the free troposphere, especially in the tropics, with strong impact on ozone production. However, estimates of lightning NOx (LNOx) production efficiency (LNOx per flash) are still quite uncertain. In this study we present a systematic analysis of NO2 column densities from SCIAMACHY measurements over active thunderstorms, as detected by the World-Wide Lightning Location Network (WWLLN), where the WWLLN detection efficiency was estimated using the flash climatology of the satellite lightning sensors LIS/OTD. Only events with high lightning activity are considered, where corrected WWLLN flash rate densities inside the satellite pixel within the last hour are above 1 /km2/h. For typical SCIAMACHY ground pixels of 30 × 60 km2, this threshold corresponds to 1800 flashes over the last hour, which, for literature estimates of lightning NOx production, should result in clearly enhanced NO2 column densities. From 2004–2008, we find 287 coincidences of SCIAMACHY measurements and high WWLLN flash rate densities. For some of these events, a clear enhancement of column densities of NO2 could be observed, indeed. But overall, the measured column densities are below the expected values by more than one order of magnitude, and in most of the cases, no enhanced NO2 could be found at all. Our results are in contradiction to the currently accepted range of LNOx production per flash of 15 (2–40)×1025 molec/flash. This probably partly results from the specific conditions for the events under investigation, i.e. events of high lightning activity in the morning (local time) and mostly (for 162 out of 287 events) over ocean. Within the detected coincidences, the highest NO2 column densities were observed around the US Eastcoast. This might be partly due to interference with ground sources of NOx being uplifted by the convective systems. However, it could also indicate that flashes in this region are particularly productive. We conclude that current estimates of LNOx production might be biased high for two reasons. First, we observe a high variability of NO2 for coincident lightning events. This high variability can easily cause a publication bias, since studies reporting on high NOx production have likely been published, while studies finding no or low amounts of NOx might have been rejected as errorneous or not significant. Second, many estimates of LNOx production in literature have been performed over the US, which is probably not representative for global lightning.

2010 ◽  
Vol 10 (8) ◽  
pp. 18255-18313
Author(s):  
S. Beirle ◽  
H. Huntrieser ◽  
T. Wagner

Abstract. Lightning is an important source of NOx in the free troposphere, especially in the tropics, with high impact on ozone production. However, estimates of lightning NOx (LNOx) production efficiency (LNOx per flash) are still quite uncertain. In this study we present a systematic analysis of NO2 column densities from SCIAMACHY measurements over active thunderstorms, as detected by the World-Wide Lightning Location Network (WWLLN), where the WWLLN detection efficiency was estimated using the flash climatology of the satellite lightning sensors LIS/OTD. Only events with high lightning activity are considered, where corrected WWLLN flash rate densities inside the satellite pixel within the last hour are above 1 /km2/h. For typical SCIAMACHY ground pixels of 30×60 km2, this threshold corresponds to 1800 flashes over the last hour, which, for literature estimates of lightning NOx production, should result in clearly enhanced NO2 column densities. From 2004–2008, we find 287 coincidences of SCIAMACHY measurements and high WWLLN flash rate densities. For some of these events, a clear enhancement of column densities of NO2 could be observed, indeed. But overall, the measured column densities are below the expected values by more than one order of magnitude, and in most of the cases, no enhanced NO2 could be found at all. Our results are in contradiction to the currently accepted range of LNOx production per flash of 15 (2–40)×1025 molec/flash. This probably partly results from the specific conditions for the events under investigation, i.e. events of high lightning activity in the morning (local time) and mostly (for 162 out of 287 events) over ocean. Within the detected coincidences, the highest NO2 column densities were observed around the US Eastcoast. This might be partly due to interference with ground sources of NOx being uplifted by the convective systems. However, it could also indicate that flashes in this region are particularly productive. We conclude that current estimates of LNOx production might be biased high for two reasons. First, we observe a high variability of NO2 for coincident lightning events. This high variability can easily cause a publication bias, since studies reporting on high NOx production have likely been published, while studies finding no or low amounts of NOx might have been rejected as errorneous or not significant. Second, many estimates of LNOx production in literature have been performed over the US, which is probably not representative for global lightning.


2011 ◽  
Vol 4 (1) ◽  
pp. 183-193 ◽  
Author(s):  
G. Sarwar ◽  
K. W. Appel ◽  
A. G. Carlton ◽  
R. Mathur ◽  
K. Schere ◽  
...  

Abstract. A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone concentrations. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. A sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While it increases in-cloud secondary organic aerosol substantially, its impact on total fine particle mass concentration is small.


2021 ◽  
Vol 13 (19) ◽  
pp. 3866
Author(s):  
Xin Zhang ◽  
Yan Yin ◽  
Julia Kukulies ◽  
Yang Li ◽  
Xiang Kuang ◽  
...  

The Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environmental Satellite 16 (GOES-16) detects total lightning continuously, with a high spatial resolution and detection efficiency. Coincident data from the GLM and the Advanced Baseline Imager (ABI) are used to explore the correlation between the cloud top properties and flash activity across the continental United States (CONUS) sector from May to September 2020. A large number of collocated infrared (IR) brightness temperature (TBB), cloud top height (CTH) and lightning data provides robust statistics. Overall, the likelihood of lightning occurrence and high flash density is higher if the TBB is colder than 225 K. The higher CTH is observed to be correlated with a larger flash rate, a smaller flash size, stronger updraft, and larger optical energy. Furthermore, the cloud top updraft velocity (w) is estimated based on the decreasing rate of TBB, but it is smaller than the updraft velocity of the convective core. As a result, the relationship between CTH and lightning flash rate is investigated independently of w over the continental, oceanic and coastal regimes in the tropics and mid-latitudes. When the CTH is higher than 12 km, the flash rates of oceanic lightning are 38% smaller than those of both coastal and continental lightning. In addition, it should be noted that more studies are necessary to examine why the oceanic lightning with low clouds (CTH < 8 km) has higher flash rates than lightning over land and coast. Finally, the exponents of derived power relationship between CTH and lightning flash rate are smaller than four, which is underestimated due to the GLM detection efficiency and the difference between IR CTH and 20 dBZ CTH. The results from combining the ABI and GLM products suggest that merging multiple satellite datasets could benefit both lightning activity and parameterization studies, although the parallax corrections should be considered.


2008 ◽  
Vol 8 (16) ◽  
pp. 4691-4710 ◽  
Author(s):  
C. Barthe ◽  
M. C. Barth

Abstract. A new parameterization of the lightning-produced NOx has been developed for cloud-resolving models. This parameterization is based on the unique characteristics of identifying which convective cells are capable of producing lightning based on a vertical velocity threshold and estimating the lightning flash rate in each convective cell from the non-precipitation and precipitation ice mass flux product. Further, the source location is filamentary instead of volumetric as in most previous parameterizations. This parameterization has been tested on the 10 July 1996 Stratospheric-Tropospheric Experiment: Radiation, Aerosols and Ozone (STERAO) storm. Comparisons of the simulated flash rate and NO mixing ratio (control experiment) with observations at different locations and stages of the storm show good agreement. An individual flash produces on average 121±41 moles of NO (7.3±2.5×1025 molecules NO) for the simulated high cloud base, high shear storm that is dominated by intra-cloud flash activity. Sensitivity tests have been performed to study the impact of the flash rate, the cloud-to-ground flash ratio, the flash length, the spatial distribution of the NO molecules, and the production rate per flash on the NO concentration and distribution. Results show a strong impact from the flash rate, the spatial placement of the lightning-NOx source and the number of moles produced per flash. On the other hand, the simulations show almost no impact from the different cloud-to-ground (CG) ratios and the lightning-NOx production rates per CG flash used as input to the model.


2008 ◽  
Vol 8 (2) ◽  
pp. 6603-6651 ◽  
Author(s):  
C. Barthe ◽  
M. C. Barth

Abstract. A new parameterization of the lightning-produced NOx has been developed for cloud-resolving models. This parameterization is based on three unique characteristics. First, the cells that can produce lightning are identified using a vertical velocity threshold. Second, the flash rate in each cell is estimated from the non-precipitation and precipitation ice mass flux product. Third, the source location is filamentary instead of volumetric as in previous parameterizations. This parameterization has been tested on the 10 July 1996 Stratospheric-Tropospheric Experiment: Radiation, Aerosols and Ozone (STERAO) storm. Comparisons of the simulated flash rate and NO mixing ratio with observations at different locations and stages of the storm show a good agreement. An individual flash produces on average 121±41 moles of NO (7.3±2.5×1025 molecules NO) for the simulated high cloud base, high shear storm. Sensitivity tests have been performed to study the impact of the flash rate, the cloud-to-ground flash ratio, the flash length, the spatial distribution of the NO molecules, and the production rate per flash on the NO concentration and distribution. Results show a strong impact from the flash rate, the spatial placement of the lightning-NOx source and the number of moles produced per flash.


Atmosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 126 ◽  
Author(s):  
Matthew Ninneman ◽  
Sarah Lu ◽  
Pius Lee ◽  
Jeffery McQueen ◽  
Jianping Huang ◽  
...  

2010 ◽  
Vol 3 (4) ◽  
pp. 2291-2314
Author(s):  
G. Sarwar ◽  
K. W. Appel ◽  
A. G. Carlton ◽  
R. Mathur ◽  
K. Schere ◽  
...  

Abstract. A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone mixing ratios. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. Sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While changes in total fine particulate mass are small, predictions of in-cloud SOA increase substantially.


2021 ◽  
Author(s):  
Xinrong Ren ◽  
Phillip Stratton ◽  
Hannah Daley ◽  
Russell Dickerson

&lt;p&gt;Aircraft observations of ozone, ozone precursors, and meteorological parameters were made over the New York City (NYC) and Baltimore areas during ozone exceedance events in summer 2018-2020.&amp;#160; Despite the continued reduction in anthropogenic emissions, ozone exceedance events still frequently occurred in the NYC area.&amp;#160; Ozone production efficiency, defined as the ratio of the ozone production rate to the NO&lt;sub&gt;x&lt;/sub&gt; oxidation rate, calculated using these observations,&amp;#160; was about 14 ppb ozone produced per ppb NOx oxidized. This high ozone production efficiency likely contributes to the persistent ozone exceedance problem over the Long Island Sound and Connecticut coastal area, downwind of NYC under prevailing southwesterly winds.&amp;#160; There is some evidence for a decreasing trend although COVID-19 restrictions had an impact on 2020 emissions.&amp;#160; A box model, constrained by observations, was used to examine atmospheric photochemical oxidation processes.&amp;#160; Ozone production rates and their sensitivity to nitrogen oxides (NO&lt;sub&gt;x&lt;/sub&gt;) and volatile organic compounds (VOCs) were calculated based on the model results. In general ozone production is VOC sensitive near emission sources and NOx sensitive away from source regions. While the Baltimore area is predominantly in the NOx sensitive region, the NYC area is transitioning from VOC sensitive to NOx sensitive.&amp;#160; Preliminary results show that controlling both NOx and VOCs reduces ozone production in the NYC area. Reducing VOCs can reduce ozone production in emission source regions and reducing NOx can reduce ozone production farther away from the source regions. The results from this work strengthen our understanding of ozone production and provide scientific information for emission control strategies to reduce air pollution in ozone non-attainment areas.&lt;/p&gt;


2010 ◽  
Vol 10 (6) ◽  
pp. 3001-3025 ◽  
Author(s):  
S. Yu ◽  
R. Mathur ◽  
G. Sarwar ◽  
D. Kang ◽  
D. Tong ◽  
...  

Abstract. A critical module of air quality models is the photochemical mechanism. In this study, the impact of the three photochemical mechanisms (CB4, CB05, SAPRC-99) on the Eta-Community Multiscale Air Quality (CMAQ) model's forecast performance for O3, and its related precursors has been assessed over the eastern United States with observations obtained by aircraft (NOAA P-3 and NASA DC-8) flights, ship and two surface networks (AIRNow and AIRMAP) during the 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) study. The results show that overall none of the mechanisms performs systematically better than the others. On the other hand, at the AIRNow surface sites, CB05 has the best performance with the normalized mean bias (NMB) of 3.9%, followed by CB4 (NMB=−5.7%) and SAPRC-99 (NMB=10.6%) for observed O3≥75 ppb, whereas CB4 has the best performance with the least overestimation for observed O3<75 ppb. On the basis of comparisons with aircraft P-3 measurements, there were consistent overestimations of O3, NOz, PAN and NOy and consistent underestimations of CO, HNO3, NO2, NO, SO2 and terpenes for all three mechanisms although the NMB values for each species and mechanisms were different. The results of aircraft DC-8 show that CB05 predicts the H2O2 mixing ratios most closely to the observations (NMB=10.8%), whereas CB4 and SAPRC-99 overestimated (NMB=74.7%) and underestimated (NMB=−25.5%) H2O2 mixing ratios significantly, respectively. For different air mass flows over the Gulf of Maine on the basis of the ship data, the three mechanisms have relatively better performance for O3, isoprene and SO2 for the clean marine or continental flows but relatively better performance for CO, NO2 and NO for southwesterly/westerly offshore flows. The results of the O3-NOz slopes over the ocean indicate that SAPRC-99 has the highest upper limits of the ozone production efficiency (εN) (5.8), followed by CB05 (4.5) and CB4 (4.0) although they are much lower than that inferred from the observation (11.8), being consistent with the fact that on average, SAPRC-99 produces the highest O3, followed by CB05 and CB4, across all O3 mixing ratio ranges


2013 ◽  
Vol 13 (3) ◽  
pp. 6923-6969 ◽  
Author(s):  
G. Sarwar ◽  
J. Godowitch ◽  
B. Henderson ◽  
K. Fahey ◽  
G. Pouliot ◽  
...  

Abstract. We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 predictions generally agree better with the observed data than the CB05TU predictions. RACM2 enhances ozone for all ambient levels leading to higher bias at low (< 60 ppbv) concentrations but improved performance at high (>70 ppbv) concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. While RACM2 enhances ozone and secondary aerosols by relatively large margins, control strategies developed for ozone or fine particles using the two mechanisms do not differ appreciably.


Sign in / Sign up

Export Citation Format

Share Document