scholarly journals Boreal forest fire emissions in fresh Canadian smoke plumes: C<sub>1</sub>-C<sub>10</sub> volatile organic compounds (VOCs), CO<sub>2</sub>, CO, NO<sub>2</sub>, NO, HCN and CH<sub>3</sub>CN

2011 ◽  
Vol 11 (13) ◽  
pp. 6445-6463 ◽  
Author(s):  
I. J. Simpson ◽  
S. K. Akagi ◽  
B. Barletta ◽  
N. J. Blake ◽  
Y. Choi ◽  
...  

Abstract. Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg−1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr−1 in the form of NMVOCs, with approximately 41 % of the carbon released as C1-C2 NMVOCs and 21 % as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) × 10−4 g kg−1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere.

2011 ◽  
Vol 11 (3) ◽  
pp. 9515-9566 ◽  
Author(s):  
I. J. Simpson ◽  
S. K. Akagi ◽  
B. Barletta ◽  
N. J. Blake ◽  
Y. Choi ◽  
...  

Abstract. Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg−1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr−1 in the form of NMVOCs, with approximately 41% of the carbon released as C1–C2 NMVOCs and 21% as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) ×10−4 g kg−1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere.


2016 ◽  
Vol 16 (5) ◽  
pp. 3485-3497 ◽  
Author(s):  
Marcella Busilacchio ◽  
Piero Di Carlo ◽  
Eleonora Aruffo ◽  
Fabio Biancofiore ◽  
Cesare Dari Salisburgo ◽  
...  

Abstract. The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3) and total peroxy nitrates ∑PNs, ∑ROONO2). The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of  ∑PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions. In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of ∑PNs, whereas minimal increase of the concentrations of O3 and NO2 is observed. The ∑PN and O3 productions have been calculated using the rate constants of the first- and second-order reactions of volatile organic compound (VOC) oxidation. The ∑PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of ∑PNs and O3 are greater than in the background plumes, but the increase of ∑PN production is more pronounced than the O3 production. The average ∑PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign, fire emissions impact both the oxidized NOy and O3,  but (1 ∑PN production is amplified significantly more than O3 production and (2) in the forest fire plumes the ratio between the O3 production and the ∑PN production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the ∑PNs produced during biomass burning is significant in the O3 budget. The implication of these observations is that fire emissions in some cases, for example boreal forest fires and in the conditions reported here, may influence more long-lived precursors of O3 than short-lived pollutants, which in turn can be transported and eventually diluted in a wide area.


1989 ◽  
Vol 94 (D2) ◽  
pp. 2255 ◽  
Author(s):  
Wesley R. Cofer ◽  
Joel S. Levine ◽  
Daniel I. Sebacher ◽  
Edward L. Winstead ◽  
Philip J. Riggan ◽  
...  

2011 ◽  
Vol 11 (5) ◽  
pp. 14127-14182 ◽  
Author(s):  
R. S. Hornbrook ◽  
D. R. Blake ◽  
G. S. Diskin ◽  
H. E. Fuelberg ◽  
S. Meinardi ◽  
...  

Abstract. Mixing ratios of a large number of volatile organic compounds (VOCs) were observed by the Trace Organic Gas Analyzer (TOGA) on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. Many of these VOCs were observed concurrently by one or both of two other VOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS) and whole air canister sampling (WAS). A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured VOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB) plumes with origins in Asia, California and Central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, identified BB plumes were grouped by flight, source region and, in some cases, time of day, generating 40 individual plume groups, each consisting of one or more BB plume interceptions. Normalized excess mixing ratios (EMRs) to CO were determined for each of the 40 plume groups for up to 19 different VOCs or VOC groups, many of which show significant variability, even within relatively fresh plumes. This variability demonstrates the importance of assessing BB plumes both regionally and temporally, as emissions can vary from region to region, and even within a fire over time. Comparisons with literature confirm that variability of EMRs to CO over an order of magnitude for many VOCs is consistent with previous observations. However, this variability is often diluted in the literature when individual observations are averaged to generate an overall regional EMR from a particular study. Previous studies give the impression that emission ratios are generally consistent within a given region, and this is not necessarily the case, as our results show. For some VOCs, earlier assumptions may lead to significant under-prediction of emissions in fire emissions inventories. Notably, though variable between plumes, observed EMRs of individual light alkanes are highly correlated within BB emissions. Using the NCAR master mechanism chemical box model initialized with concentrations based on two observed scenarios, i.e., fresh Canadian BB and fresh Californian BB, both plumes are expected to experience primarily decreases in oxygenated VOCs during the first 2.5 days, such that any production in the plumes of these compounds is less than the chemical loss. Comparisons of the modeled EMRs to the observed EMRs from BB plumes estimated to be three days in age or less indicate overall good agreement and, for most compounds, no significant difference between BB plumes in these two regions.


2015 ◽  
Vol 15 (5) ◽  
pp. 6009-6040
Author(s):  
M. Busilacchio ◽  
P. Di Carlo ◽  
E. Aruffo ◽  
F. Biancofiore ◽  
C. D. Salisburgo ◽  
...  

Abstract. The observations collected during the BORTAS campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3) and total peroxy nitrates (ΣPNs, ΣROONO2). The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of ΣPNs, a long lived O3 reservoir whose concentration is supposed to be impacted by biomass burning emissions. In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of ΣPNs concentrations, whereas minimal increase of the concentrations of O3 and NO2 are observed. In those fire plumes the average ΣPNs production is 12 times greater than in the background plumes, by contrast the average O3 production is only 5 times greater. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign, fire emissions impact both the oxidized NOy and O3, but: (1) ΣPNs production is affected significantly respect to the O3 production and (2) in the forest fire plumes the ratio between the ΣPNs production and the O3 production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the ΣPNs produced during biomass burning is significant in the O3 budget. These observations are consistent with elevated production of PAN and concurrent low production (or sometimes loss) of O3 observed in some another campaigns (i.e. ARCTAS-B) focused on forest fire emissions. Moreover our observations extend ARCTAS-B results since PAN is one of the compounds included in the ΣPNs family detected during BORTAS. The implication of these observations is that fire emissions in some cases, for example Boreal forest fires and in the conditions reported here, may influence more long lived precursors of O3 than short lived pollutants, which in turn can be transported and eventually diluted in a wide area. These observations provide additional indirect evidence that O3 production may be enhanced as plumes from forest fires age.


2007 ◽  
Vol 7 (3) ◽  
pp. 8755-8793 ◽  
Author(s):  
T. G. Karl ◽  
T. J. Christian ◽  
R. J. Yokelson ◽  
P. Artaxo ◽  
W. Min Hao ◽  
...  

Abstract. Volatile Organic Compound (VOC) emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS), Fourier Transformation Infrared Spectroscopy (FTIR) and gas chromatography (GC) coupled to PTRMS (GC-PTR-MS). We investigated VOC emissions from 19 controlled laboratory fires at the USFS Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC) (OVOC/NMHC ~4:1, NMHC: non-methane hydrocarbons) The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H3O+ ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min) and aged (>1hour-1day) smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer) are presented.


2019 ◽  
Vol 16 (7) ◽  
pp. 1629-1640 ◽  
Author(s):  
Lifei Yin ◽  
Pin Du ◽  
Minsi Zhang ◽  
Mingxu Liu ◽  
Tingting Xu ◽  
...  

Abstract. Biomass burning plays a significant role in air pollution and climate change. In this study, we used a method based on fire radiative energy (FRE) to develop a biomass burning emission inventory for China from 2003 to 2017. Daily fire radiative power (FRP) data derived from 1 km MODIS Thermal Anomalies/Fire products (MOD14/MYD14) were used to calculate FRE and combusted biomass. Available emission factors were assigned to four biomass burning types: forest, cropland, grassland, and shrubland fires. The farming system and crop types in different temperate zones were taken into account in this research. Compared with traditional methods, the FRE method was found to provide a more reasonable estimate of emissions from small fires. The estimated average annual emission ranges, with a 90 % confidence interval, were 91.4 (72.7–108.8) Tg CO2 yr−1, 5.0 (2.3–7.8)  Tg CO yr−1, 0.24 (0.05–0.48) Tg CH4 yr−1, 1.43 (0.53–2.35) Tg NMHC yr−1, 0.23 (0.05–0.45) Tg NOx yr−1, 0.09 (0.02–0.17) Tg NH3 yr−1, 0.03 (0.01–0.05) Tg SO2 yr−1, 0.04 (0.01–0.08) Tg BC yr−1, 0.27 (0.07–0.49) Tg OC yr−1, 0.51 (0.19–0.84) Tg PM2.5 yr−1, 0.57 (0.15–1.05) Tg PM10 yr−1, where NMHC, BC, and OC are nonmethane hydrocarbons, black carbon, and organic carbon, respectively. Forest fires are determined to be the primary contributor to open fire emissions, accounting for 45 % of the total CO2 emissions (average 40.8 Tg yr−1). Crop residue burning ranked second place with a large portion of 39 % (average 35.3 Tg yr−1). During the study period, emissions from forest and grassland fires showed a significant downward trend. Crop residue emissions continued to rise during 2003–2015 but dropped by 42 % in 2015–2016. Emissions from shrubland were negligible and little changed. Forest and grassland fires are concentrated in northeastern China and southern China, especially in the dry season (from October to March of the following year). Plain areas with high crop yields, such as the North China Plain, experienced high agricultural fire emissions in harvest seasons. Most shrubland fires were located in Yunnan and Guangdong provinces. The resolution of our inventory (daily, 1 km) is much higher than previous inventories, such as GFED4s and GFASv1.0. It could be used in global and regional air quality modeling.


2019 ◽  
Vol 19 (3) ◽  
pp. 1685-1702 ◽  
Author(s):  
Laura Gonzalez-Alonso ◽  
Maria Val Martin ◽  
Ralph A. Kahn

Abstract. We characterise the vertical distribution of biomass-burning emissions across the Amazon during the biomass-burning season (July–November) with an extensive climatology of smoke plumes derived from MISR and MODIS (2005–2012) and CALIOP (2006–2012) observations. Smoke plume heights exhibit substantial variability, spanning a few hundred metres up to 6 km above the terrain. However, the majority of the smoke is located at altitudes below 2.5 km. About 60 % of smoke plumes are observed in drought years, 40 %–50 % at the peak month of the burning season (September) and 94 % over tropical forest and savanna regions, with respect to the total number of smoke plume observations. At the time of the MISR observations (10:00–11:00 LT), the highest plumes are detected over grassland fires (with an averaged maximum plume height of ∼1100 m) and the lowest plumes occur over tropical forest fires (∼800 m). A similar pattern is found later in the day (14:00–15:00 LT) with CALIOP, although at higher altitudes (2300 m grassland vs. 2000 m tropical forest), as CALIOP typically detects smoke at higher altitudes due to its later overpass time, associated with a deeper planetary boundary layer, possibly more energetic fires, and greater sensitivity to thin aerosol layers. On average, 3 %–20 % of the fires inject smoke into the free troposphere; this percentage tends to increase toward the end of the burning season (November: 15 %–40 %). We find a well-defined seasonal cycle between MISR plume heights, MODIS fire radiative power and atmospheric stability across the main biomes of the Amazon, with higher smoke plumes, more intense fires and reduced atmospheric stability conditions toward the end of the burning season. Lower smoke plume heights are detected during drought (800 m) compared to non-drought (1100 m) conditions, in particular over tropical forest and savanna fires. Drought conditions favour understory fires over tropical forest, which tend to produce smouldering combustion and low smoke injection heights. Droughts also seem to favour deeper boundary layers and the percentage of smoke plumes that reach the free troposphere is lower during these dry conditions. Consistent with previous studies, the MISR mid-visible aerosol optical depth demonstrates that smoke makes a significant contribution to the total aerosol loading over the Amazon, which in combination with lower injection heights in drought periods has important implications for air quality. This work highlights the importance of biome type, fire properties and atmospheric and drought conditions for plume dynamics and smoke loading. In addition, our study demonstrates the value of combining observations of MISR and CALIOP constraints on the vertical distribution of smoke from biomass burning over the Amazon.


Sign in / Sign up

Export Citation Format

Share Document