scholarly journals Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS)

2014 ◽  
Vol 14 (22) ◽  
pp. 12181-12194 ◽  
Author(s):  
Y. You ◽  
V. P. Kanawade ◽  
J. A. de Gouw ◽  
A. B. Guenther ◽  
S. Madronich ◽  
...  

Abstract. We report measurements of ambient amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest and a moderately polluted midwestern site during the summer. At the forest site, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected, and they both showed temperature dependencies. Aerosol-phase amines measured thermal-desorption chemical ionization mass spectrometer (TDCIMS) showed a higher mass fraction in the evening with cooler temperatures and lower in the afternoon with warmer temperatures, a trend opposite to the gas-phase amines. Concentrations of aerosol-phase primary amines measured with Fourier transform infrared spectroscopy (FTIR) from micron and submicron particles were 2 orders of magnitude higher than the gas-phase amines. These results indicate that gas to particle conversion is one of the major processes that control the ambient amine concentrations at this forest site. Temperature dependencies of C3-amines and ammonia also imply reversible processes of evaporation of these nitrogen-containing compounds from soil surfaces in daytime and deposition to soil surfaces at nighttime. During the transported biomass burning plume events, various amines (C1–C6) appeared at the pptv level, indicating that biomass burning is a substantial source of amines in the southeastern US. At the moderately polluted Kent site, there were higher concentrations of C1- to C6-amines (pptv to tens of pptv) and ammonia (up to 6 ppbv). C1- to C3-amines and ammonia were well correlated with the ambient temperature. C4- to C6-amines showed frequent spikes during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Higher amine concentrations measured at the polluted site than at the rural forested site highlight the importance of constraining anthropogenic emission sources of amines.

2014 ◽  
Vol 14 (11) ◽  
pp. 16411-16450 ◽  
Author(s):  
Y. You ◽  
V. P. Kanawade ◽  
J. A. de Gouw ◽  
A. B. Guenther ◽  
S. Madronich ◽  
...  

Abstract. We report ambient measurements of amines and ammonia with a~fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest in Alabama and a~moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1–C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast US. At the moderately polluted Kent site, higher concentrations of amines (C1–C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.


2010 ◽  
Vol 3 (2) ◽  
pp. 1133-1162 ◽  
Author(s):  
D. R. Benson ◽  
M. Al-Refai ◽  
S.-H. Lee

Abstract. This study describes a chemical ionization mass spectrometer (CIMS) for fast response, in-situ measurements for gas phase ammonia. Protonated ethanol ions were used as the ion-molecule reaction reagent. The CIMS sensitivity was estimated to be between 4–25 Hz/pptv with 30% uncertainty. The instrument background was below 1 ppbv and at lowest was 300 pptv. The uncertainty associated with the instrumental background was less than 30 pptv under the optimized experimental conditions. The time response was less than 30 s, and the detection limit was approximately 60 pptv. This CIMS was used to measure the ambient NH3 in Kent, Ohio, for several weeks throughout three seasons. The measured ammonia mixing ratios were usually at the sub-ppbv level, and higher during the spring (200±120 pptv) than in the winter (60±75 pptv) and fall (150±80 pptv).


2010 ◽  
Vol 3 (4) ◽  
pp. 1075-1087 ◽  
Author(s):  
D. R. Benson ◽  
A. Markovich ◽  
M. Al-Refai ◽  
S.-H. Lee

Abstract. This study presents a chemical ionization mass spectrometer (CIMS) for fast response, in-situ measurements of gas phase ammonia (NH3). The NH3 background level detected with the CIMS ranged between 0.3–1 ppbv, with an uncertainty of 30 pptv under optimized conditions. The instrument sensitivity varied from 4–25 Hz/pptv for >1 MHz of reagent ion signals (protonated ethanol ions), with a 30% uncertainty estimated based on variability in calibration signals. The CIMS detection limit for NH3 was ~60 pptv at a 1 min integration time (3 sigma). The CIMS time response was <30 s. This new NH3-CIMS has been used for ambient measurements in Kent, Ohio, for several weeks throughout three seasons. The measured NH3 mixing ratios were usually at the sub-ppbv level and higher in spring (200 ± 120 pptv) than in winter (60 ± 75 pptv) and fall (150 ± 80 pptv). High emissions of SO2 from power plants in this region, and thus possible high acidity of aerosol particles, may explain these low NH3 mixing ratios in general.


2015 ◽  
Vol 8 (3) ◽  
pp. 3199-3244 ◽  
Author(s):  
P. Brophy ◽  
D. K. Farmer

Abstract. A novel configuration of the Aerodyne high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) as a switchable reagent ion (SRI) HR-TOF-CIMS is presented and described along with data collected at the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013. The calibration system and reduced pressure gas-phase inlet are characterized. The average limit of detection and limit of quantification for formic acid during SOAS are 82 and 863 ppt, respectively, corresponding to an average sensitivity of 13 ± 5 Hz ppt−1. Hourly background determinations and calibrations are shown to be essential for tracking instrument performance and accurately quantifying formic acid. Maximum daytime formic acid concentrations of 10 ppb are reported during SOAS, and a strong diel cycle is observed leading to night time concentrations below the limit of quantification. Other species presented exhibit diel behavior similar to formic acid. The concept of the mass defect enhancement plot and the use of signal-to-noise are described in detail as a method for investigating HR-TOF-CIMS spectra in an effort to reduce data complexity.


2015 ◽  
Vol 8 (7) ◽  
pp. 2945-2959 ◽  
Author(s):  
P. Brophy ◽  
D. K. Farmer

Abstract. A novel configuration of the Aerodyne high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) as a switchable reagent ion (SRI) HR-TOF-CIMS is presented and described along with data collected at the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013. The calibration system and reduced pressure gas phase inlet are characterized. The average limit of detection and limit of quantification for formic acid during SOAS are 82 and 863 ppt, respectively, corresponding to an average sensitivity of 13 ± 5 Hz ppt−1. Hourly background determinations and calibrations are shown to be essential for tracking instrument performance and accurately quantifying formic acid. Maximum daytime formic acid concentrations of 10 ppb are reported during SOAS, and a strong diel cycle is observed leading to nighttime concentrations below the limit of quantification. Other species presented exhibit diel behavior similar to formic acid. The concept of the mass defect enhancement plot and the use of signal-to-noise are described in detail as a method for investigating HR-TOF-CIMS spectra in an effort to reduce data complexity.


Sign in / Sign up

Export Citation Format

Share Document