scholarly journals Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013

2014 ◽  
Vol 14 (6) ◽  
pp. 2887-2903 ◽  
Author(s):  
J. K. Zhang ◽  
Y. Sun ◽  
Z. R. Liu ◽  
D. S. Ji ◽  
B. Hu ◽  
...  

Abstract. In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 89.3 ± 85.6 μg m−3, and it peaked at 423 μg m−3. Positive matrix factorization (PMF) differentiated the organic aerosol into five components, including a highly oxidized, low-volatility oxygenated organic aerosol (LV-OOA), a less oxidized, semi-volatile oxygenated OA (SV-OOA), a coal combustion OA (CCOA), a cooking-related OA (COA), and a hydrocarbon-like OA (HOA), which on average accounted for 28%, 26%, 15%, 20% and 11% of the total organic mass, respectively. A detailed comparison between the polluted days and unpolluted days found many interesting results. First, the organic fraction was the most important NR-PM1 species during the unpolluted days (58%), while inorganic species were dominant on polluted days (59%). The OA composition also experienced a significant change; it was dominated by primary OA (POA), including COA, HOA and CCOA, on unpolluted days. The contribution of secondary OA (SOA) increased from 35% to 63% between unpolluted and polluted days. Second, meteorological effects played an important role in the heavy pollution in this month and differed significantly between the two types of days. The temperature and relative humidity (RH) were all increased on polluted days and the wind speed and air pressure were decreased. Third, the diurnal variation trend in NR-PM1 species and OA components showed some differences between the two types of days, and the OA was more highly oxidized on polluted days. Fourth, the effects of air masses were significantly different between the two types of days; air was mainly transported from contaminated areas on the polluted days. The comparison also found that the aerosol was more acidic on polluted days. Additionally, the variation trends of the mass concentration and mass fractions of NR-PM1 species and OA components were more dramatic when the NR-PM1 mass loading was at a higher level. The serious pollution observed in this month can be attributed to the synergy of unfavorable meteorological factors, the transport of air masses from high-pollution areas, emission by local sources, and other factors.

2011 ◽  
Vol 11 (4) ◽  
pp. 1837-1852 ◽  
Author(s):  
E. Kang ◽  
D. W. Toohey ◽  
W. H. Brune

Abstract. The oxidation of secondary organic aerosol (SOA) is studied with mass spectra analysis of SOA formed in a Potential Aerosol Mass (PAM) chamber, a small flow-through photo-oxidation chamber with extremely high OH and ozone levels. The OH exposure from a few minutes in the PAM chamber is similar to that from days to weeks in the atmosphere. The mass spectra were measured with a Quadrupole Aerosol Mass Spectrometer (Q-AMS) for SOA formed from oxidation of α-pinene, m-xylene, p-xylene, and a mixture of the three. The organic mass fractions of m/z 44 (CO2+) and m/z 43 (mainly C2H3O+), named f44 and f43 respectively, are used as indicators of the degree of organic aerosol (OA) oxidation that occurs as the OA mass concentration or the OH exposure are varied. The degree of oxidation is sensitive to both. For a fixed OH exposure, the degree of oxidation initially decreases rapidly and then more slowly as the OA mass concentration increases. For fixed initial precursor VOC amounts, the degree of oxidation increases linearly with OH exposure, with f44 increasing and f43 decreasing. In this study, the degree of SOA oxidation spans much of the range observed in the atmosphere. These results, while sensitive to the determination of f44 and f43, provide evidence that some characteristics of atmospheric OA oxidation can be generated in a PAM chamber. For all measurements in this study, the sum of f44 and f43 is 0.25 ± 0.03, so that the slope of a linear regression is approximately −1 on an f44 vs. f43 plot. This constancy of the sum suggests that these ions are complete proxies for organic mass in the OA studied.


2010 ◽  
Vol 10 (4) ◽  
pp. 2063-2077 ◽  
Author(s):  
T. Raatikainen ◽  
P. Vaattovaara ◽  
P. Tiitta ◽  
P. Miettinen ◽  
J. Rautiainen ◽  
...  

Abstract. An Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) was deployed in Hyytiälä, a forested rural measurement site in southern Finland, during a 2-week measurement campaign in spring 2005. Q-AMS measures mass concentrations of non-refractory species including sulphate, nitrate, ammonium and organics from submicron particles. A positive matrix factorization method was used in identifying two oxygenated organic aerosol (OOA) groups from the measured total organic mass. The properties of these groups were estimated from their diurnal concentration cycles and correlations with additional data such as air mass history, particle number size distributions, hygroscopic and ethanol growth factors and particle volatility. It was found that the aged and highly oxidized background organic aerosol (OOA1 or LV-OOA) species have a wide range of hygroscopic growth factors and volatilization temperatures, but on the average OOA1 is the less volatile and more hygroscopic organic group. Hygroscopic properties and volatilities of the OOA1 species are correlated so that the less volatile species have higher hygroscopic growth factors. The other, less oxidized organic aerosol group (OOA2 or SV-OOA) is more volatile and non-hygroscopic. Trajectory analysis showed that OOA1 and the inorganic species are mainly long-range transported anthropogenic pollutions. OOA2 species and its precursor gases have short atmospheric life times, so they are from local sources. These results span the range of previous observations of oxygen content, volatility and hygroscopic growth factor, simultaneously coupling all three measurements for the first time.


2014 ◽  
Vol 14 (18) ◽  
pp. 10061-10084 ◽  
Author(s):  
D. Liu ◽  
J. D. Allan ◽  
D. E. Young ◽  
H. Coe ◽  
D. Beddows ◽  
...  

Abstract. Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC–AMS–PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core – Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16 and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10%, respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W, SE and E air masses, the BCsf mass fractions ranged from 16 ± 6%, 24 ± 10% and 39 ± 14%, respectively). An increased fraction of non-BC particles (particles that did not contain a BC core) was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC–AMS–PMF multiple linear regression method (BC–AMS–PMF : SP2 ratio = 1.05, r2 = 0.80) over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed absorption Ångström exponent (αwb) had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase.


2013 ◽  
Vol 13 (10) ◽  
pp. 25969-25999 ◽  
Author(s):  
A. Bougiatioti ◽  
I. Stavroulas ◽  
E. Kostenidou ◽  
P. Zarmpas ◽  
C. Theodosi ◽  
...  

Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during night-time. The chemical composition of the particulate matter was studied by different high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC measurements and Positive Matrix Factorization (PMF) analysis of the ACSM mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during summertime.


2012 ◽  
Vol 12 (1) ◽  
pp. 527-543 ◽  
Author(s):  
S. L. Capps ◽  
D. K. Henze ◽  
A. Hakami ◽  
A. G. Russell ◽  
A. Nenes

Abstract. We present the development of ANISORROPIA, the discrete adjoint of the ISORROPIA thermodynamic equilibrium model that treats the Na+-SO42−- HSO4−-NH4+ -NO3−-Cl−-H2O aerosol system, and we demonstrate its sensitivity analysis capabilities. ANISORROPIA calculates sensitivities of an inorganic species in aerosol or gas phase with respect to the total concentrations of each species present with less than a two-fold increase in computational time over the concentration calculations. Due to the highly nonlinear and discontinuous solution surface of ISORROPIA, evaluation of the adjoint required a new, complex-variable version of the model, which determines first-order sensitivities with machine precision and avoids cancellation errors arising from finite difference calculations. The adjoint is verified over an atmospherically relevant range of concentrations, temperature, and relative humidity. We apply ANISORROPIA to recent field campaign results from Atlanta, GA, USA, and Mexico City, Mexico, to characterize the inorganic aerosol sensitivities of these distinct urban air masses. The variability in the relationship between fine mode inorganic aerosol mass and precursor concentrations shown has important implications for air quality and climate.


2019 ◽  
Vol 19 (22) ◽  
pp. 14329-14338 ◽  
Author(s):  
Misti Levy Zamora ◽  
Jianfei Peng ◽  
Min Hu ◽  
Song Guo ◽  
Wilmarie Marrero-Ortiz ◽  
...  

Abstract. Severe wintertime haze events with exceedingly high levels of aerosols have occurred frequently in China in recent years, impacting human health, weather, and the climate. A better knowledge of the formation mechanism and aerosol properties during haze events is helpful for the development of effective mitigation policies. In this study, we present field measurements of aerosol properties at an urban site in Beijing during January and February 2015. A suite of aerosol instruments were deployed to measure a comprehensive set of aerosol chemical and physical properties. The evolution of haze events in winter, dependent on meteorological conditions, consistently involves new particle formation during the clean period and subsequently continuous growth from the nucleation mode particles to submicron particles over the course of multiple days. Particulate organic matter is primarily responsible for producing the nucleation mode particles, while secondary organic and inorganic components jointly contribute to the high aerosol mass observed during haze events. The average effective density and hygroscopic parameter (κ) of ambient particles are approximately 1.37 g cm−3 and 0.25 during the clean period and increase to 1.42 g cm−3 and 0.4 during the polluted period, indicating the formation of secondary inorganic species from the continuous growth of nucleation mode particles. Our results corroborate that the periodic cycles of severe haze formation in Beijing during winter are attributed to the efficient nucleation and secondary aerosol growth under high gaseous precursor concentrations and the stagnant air conditions, highlighting that reductions in emissions of aerosol precursor gases are critical for remedying secondary aerosol formation and thereby mitigating haze pollution.


2019 ◽  
Vol 19 (7) ◽  
pp. 5235-5249 ◽  
Author(s):  
Kuangyou Yu ◽  
Qiao Zhu ◽  
Ke Du ◽  
Xiao-Feng Huang

Abstract. Organic nitrates are important atmospheric species that significantly affect the cycling of NOx and ozone production. However, characterization of particulate organic nitrates and their sources in polluted atmosphere is a big challenge and has not been comprehensively studied in Asia. In this study, an aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in China from 2015 to 2016 to characterize particulate organic nitrates in total nitrates with a high time resolution. Based on the cross-validation of two different data processing methods, organic nitrates were effectively quantified to contribute a notable fraction of organic aerosol (OA), namely 9 %–21 % in spring, 11 %–25 % in summer, and 9 %–20 % in autumn, while contributing a very small fraction in winter. The good correlation between organic nitrates and fresh secondary organic aerosol (SOA) at night, as well as the diurnal trend of size distribution of organic nitrates, indicated a key role of nighttime local secondary formation of organic nitrates. Furthermore, theoretical calculations of nighttime SOA production of NO3 reactions with volatile organic compounds (VOCs) measured during the spring campaign were performed, resulting in three biogenic VOCs (α-pinene, limonene, and camphene) and one anthropogenic VOC (styrene) identified as the possible key VOC precursors to particulate organic nitrates. The comparison with similar studies in the literature implied that nighttime particulate organic nitrate formation is highly relevant to NOx levels. This study proposes that unlike the documented cases in the United States and Europe, modeling nighttime particulate organic nitrate formation in China should incorporate not only biogenic VOCs but also anthropogenic VOCs for urban air pollution, which needs the support of relevant smog chamber studies in the future.


2007 ◽  
Vol 64 (2) ◽  
pp. 441-459 ◽  
Author(s):  
Craig A. Stroud ◽  
Athanasios Nenes ◽  
Jose L. Jimenez ◽  
Peter F. DeCarlo ◽  
J. Alex Huffman ◽  
...  

Abstract Measurements of aerosol size distribution, chemical composition, and cloud condensation nuclei (CCN) concentration were performed during the Chemical Emission, Loss, Transformation, and Interactions with Canopies (CELTIC) field program at Duke Forest in North Carolina. A kinetic model of the cloud activation of ambient aerosol in the chamber of the CCN instrument was used to perform an aerosol–CCN closure study. This study advances prior investigations by employing a novel fitting algorithm that was used to integrate scanning mobility particle sizer (SMPS) measurements of aerosol number size distribution and aerosol mass spectrometer (AMS) measurements of the mass size distribution for sulfate, nitrate, ammonium, and organics into a single, coherent description of the ambient aerosol in the size range critical to aerosol activation (around 100-nm diameter). Three lognormal aerosol size modes, each with a unique internally mixed composition, were used as input into the kinetic model. For the two smaller size modes, which control CCN number concentration, organic aerosol mass fractions for the defined cases were between 58% and 77%. This study is also unique in that the water vapor accommodation coefficient was estimated based on comparing the initial timing for CCN activation in the instrument chamber with the activation predicted by the kinetic model. The kinetic model overestimated measured CCN concentrations, especially under polluted conditions. Prior studies have attributed a positive model bias to an incomplete understanding of the aerosol composition, especially the role of organics in the activation process. This study shows that including measured organic mass fractions with an assumed organic aerosol speciation profile (pinic acid, fulvic acid, and levoglucosan) and an assumed organic aerosol solubility of 0.02 kg kg−1 still resulted in a significant model positive bias for polluted case study periods. The slope and y intercept for the CCN predicted versus CCN observed regression was found to be 1.9 and −180 cm−3, respectively. The overprediction generally does not exceed uncertainty limits but is indicative that a bias exists in the measurements or application of model. From this study, uncertainties in the particle number and mass size distributions as the cause for the model bias can be ruled out. The authors are also confident that the model is including the effects of growth kinetics on predicted activated number. However, one cannot rule out uncertainties associated with poorly characterized CCN measurement biases, uncertainties in assumed organic solubility, and uncertainties in aerosol mixing state. Sensitivity simulations suggest that assuming either an insoluble organic fraction or external aerosol mixing were both sufficient to reconcile the model bias.


2014 ◽  
Vol 14 (15) ◽  
pp. 8017-8042 ◽  
Author(s):  
M. L. McGuire ◽  
R. Y.-W. Chang ◽  
J. G. Slowik ◽  
C.-H. Jeong ◽  
R. M. Healy ◽  
...  

Abstract. Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR–ToF–AMS data, due to the ability to understand better the chemical nature of atypical factors from high-resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of the extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.


2017 ◽  
Vol 17 (11) ◽  
pp. 7143-7155 ◽  
Author(s):  
Christos Kaltsonoudis ◽  
Evangelia Kostenidou ◽  
Evangelos Louvaris ◽  
Magda Psichoudaki ◽  
Epameinondas Tsiligiannis ◽  
...  

Abstract. Cooking emissions can be a significant source of fine particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. Greek souvlakia with pork were cooked using a commercial charbroiler and a fraction of the emissions were introduced into a smog chamber where after a characterization phase they were exposed to UV illumination and oxidants. The particulate and gas phases were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a proton-transfer-reaction mass spectrometer (PTR-MS) correspondingly. More than 99 % of the aerosol emitted was composed of organic compounds, while black carbon (BC) contributed 0.3 % and the inorganic species less than 0.5 % of the total aerosol mass. The initial O  :  C ratio was approximately 0.09 and increased up to 0.30 after a few hours of chemical aging (exposures of 1010 molecules cm−3 s for OH and 100 ppb h for ozone). The initial and aged AMS spectra differed considerably (θ =  27°). Ambient measurements were also conducted during Fat Thursday in Patras, Greece, when traditionally meat is charbroiled everywhere in the city. Positive matrix factorization (PMF) revealed that cooking organic aerosol (COA) reached up to 85 % of the total OA from 10:00 to 12:00 LST that day. The ambient COA factor in two major Greek cities had a mass spectrum during spring and summer similar to the aged meat charbroiling emissions. In contrast, the ambient COA factor during winter resembled strongly the fresh laboratory meat charbroiling emissions.


Sign in / Sign up

Export Citation Format

Share Document