scholarly journals Estimation of cloud condensation nuclei concentration from aerosol optical quantities: influential factors and uncertainties

2014 ◽  
Vol 14 (1) ◽  
pp. 471-483 ◽  
Author(s):  
Jianjun Liu ◽  
Zhanqing Li

Abstract. Large-scale measurements of cloud condensation nuclei (CCN) are difficult to obtain on a routine basis, whereas aerosol optical quantities are more readily available. This study investigates the relationship between CCN and aerosol optical quantities for some distinct aerosol types using extensive observational data collected at multiple Atmospheric Radiation Measurement (ARM) Climate Research Facility (CRF) sites around the world. The influences of relative humidity (RH), aerosol hygroscopicity (fRH) and single scattering albedo (SSA) on the relationship are analyzed. Better relationships are found between aerosol optical depth (AOD) and CCN at the Southern Great Plains (US), Ganges Valley (India) and Black Forest sites (Germany) than those at the Graciosa Island (the Azores) and Niamey (Niger) sites, where sea salt and dust aerosols dominate, respectively. In general, the correlation between AOD and CCN decreases as the wavelength of the AOD measurement increases, suggesting that AOD at a shorter wavelength is a better proxy for CCN. The correlation is significantly improved if aerosol index (AI) is used together with AOD. The highest correlation exists between CCN and aerosol scattering coefficients (σsp) and scattering AI measured in situ. The CCN–AOD (AI) relationship deteriorates with increasing RH. If RH exceeds 75%, the relationship where AOD is used as a proxy for CCN becomes invalid, whereas a tight σsp–CCN relationship exists for dry particles. Aerosol hygroscopicity has a weak impact on the σsp–CCN relationship. Particles with low SSA are generally associated with higher CCN concentrations, suggesting that SSA affects the relationship between CCN concentration and aerosol optical quantities. It may thus be used as a constraint to reduce uncertainties in the relationship. A significant increase in σsp and decrease in CCN with increasing SSA is observed, leading to a significant decrease in their ratio (CCN / σsp) with increasing SSA. Parameterized relationships are developed for estimating CCN, which account for RH, particle size, and SSA.

2013 ◽  
Vol 13 (9) ◽  
pp. 23023-23056
Author(s):  
J. Liu ◽  
Z. Li

Abstract. Cloud condensation nuclei (CCN) is a key variable for understanding cloud formation, but it is hard to obtain on large scales on a routine basis, whereas aerosol optical quantities are more readily available. This study presents an in-depth investigation on the relationship between CCN and aerosol optical quantities in regions of distinct aerosol types using extensive measurements collected at multiple Atmospheric Radiation Measurement (ARM) Climate Research Facility (CRF) sites around the world. The influences of relative humidity (RH), aerosol hygroscopicity (fRH) and single scattering albedo (SSA) on the relationship are analyzed. Better relationships are found between aerosol optical depth (AOD) and CCN at the Southern Great Plains (US), Ganges Valley (India) and Black Forest sites (Germany) than those at the Graciosa Island and Niamey (Niger) sites, where sea salt and dust aerosols dominate, respectively. In general, the correlation between AOD and CCN decreases as the wavelength of AOD measurement increases, suggesting that AOD measured at a shorter wavelength is a better proxy of CCN. The correlation is significantly improved if aerosol index (AI) is used together with AOD. The highest correlation exists between CCN and aerosol scattering coefficients (σsp) and scattering AI measured in-situ. The CCN-AOD (AI) relationship deteriorates with increasing RH. If RH exceeds 75%, the relationship becomes almost invalid for using AOD as a CCN proxy, whereas a tight σsp-CCN relationship exists for dry particles. Aerosol hygroscopicity has a weak impact on the σsp-CCN relationship. Particles with low SSA are generally associated with higher CCN concentrations, suggesting that SSA affects the relationship between CCN concentration and aerosol optical quantities. It may thus be used as a constraint to reduce uncertainties in the relationship. A significant increase in σsp and decrease in CCN with increasing SSA is observed, leading to a significant decrease in their ratio (CCN/σsp) with increasing SSA. The relationships and major influential factors are parameterization for improving CCN estimation with varying amount of information on RH, particle size and SSA.


2020 ◽  
Vol 20 (10) ◽  
pp. 5911-5922 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles Chung-Kuang Chou ◽  
Celine Siu Lan Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matter (PM2.5), the size distribution and number concentration of aerosol particles (NCN), and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan during an intensive observation experiment from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e., activation ratio, activation diameter and kappa of CCN) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols (kappa – κ – of 0.18–0.56, for water vapor supersaturation – SS – of 0.12 %–0.80 %), which were subject to various pollution sources, including aged air pollutants originating in eastern and northern China and transported by the Asian continental outflows and fresh particles emitted from local sources and distributed by land–sea breeze circulations as well as produced by processes of new particle formation (NPF). Cluster analysis was applied to the back trajectories of air masses to investigate their respective source regions. The results showed that aerosols associated with Asian continental outflows were characterized by lower NCN and NCCN values and by higher kappa values of CCN, whereas higher NCN and NCCN values with lower kappa values of CCN were observed in the aerosols associated with local air masses. Besides, it was revealed that the kappa value of CCN exhibited a decrease during the early stage of an event of new particle formation, which turned to an increasing trend over the later period. The distinct features in the hygroscopicity of aerosols were found to be consistent with the characteristics in the chemical composition of PM2.5. This study has depicted a clear seasonal characteristic of hygroscopicity and CCN activity under the influence of a complex mixture of pollutants from different regional and/or local pollution sources. Nevertheless, the mixing state and chemical composition of the aerosols critically influence the aerosol hygroscopicity, and further investigations are necessary to elucidate the atmospheric processing involved in the CCN activation in coastal areas.


2004 ◽  
Vol 4 (8) ◽  
pp. 2119-2143 ◽  
Author(s):  
J. Rissler ◽  
E. Swietlicki ◽  
J. Zhou ◽  
G. Roberts ◽  
M. O. Andreae ◽  
...  

Abstract. Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1°55.2'S, 59°28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (~1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.


2021 ◽  
Vol 21 (12) ◽  
pp. 9497-9513
Author(s):  
Jack B. Simmons ◽  
Ruhi S. Humphries ◽  
Stephen R. Wilson ◽  
Scott D. Chambers ◽  
Alastair G. Williams ◽  
...  

Abstract. Aerosol measurements over the Southern Ocean have been identified as critical to an improved understanding of aerosol–radiation and aerosol–cloud interactions, as there currently exists significant discrepancies between model results and measurements in this region. The atmosphere above the Southern Ocean provides crucial insight into an aerosol regime relatively free from anthropogenic influence, yet its remoteness ensures atmospheric measurements are relatively rare. Here we present observations from the Polar Cell Aerosol Nucleation (PCAN) campaign, hosted aboard the RV Investigator during a summer (January–March) 2017 voyage from Hobart, Australia, to the East Antarctic seasonal sea ice zone. A median particle number concentration (condensation nuclei > 3 nm; CN3) of 354 (95 % CI 345–363) cm−3 was observed from the voyage. Median cloud condensation nuclei (CCN) concentrations were 167 (95 % CI 158–176) cm−3. Measured particle size distributions suggested that aerosol populations had undergone significant cloud processing. To understand the variability in aerosol observations, measurements were classified by meteorological variables. Wind direction and absolute humidity were used to identify different air masses, and aerosol measurements were compared based on these identifications. CN3 concentrations measured during SE wind directions (median 594 cm−3) were higher than those measured during wind directions from the NW (median 265 cm−3). Increased frequency of measurements from these wind directions suggests the influence of large-scale atmospheric transport mechanisms on the local aerosol population in the boundary layer of the East Antarctic seasonal ice zone. Modelled back trajectories imply different air mass histories for each measurement group, supporting this suggestion. CN3 and CCN concentrations were higher during periods where the absolute humidity was less than 4.3 gH2O/m3, indicative of free tropospheric or Antarctic continental air masses, compared to other periods of the voyage. Increased aerosol concentration in air masses originating close to the Antarctic coastline have been observed in numerous other studies. However, the smaller changes observed in the present analyses suggest seasonal differences in atmospheric circulation, including lesser impact of synoptic low-pressure systems in summer. Further measurements in the region are required before a more comprehensive picture of atmospheric circulation in this region can be captured and its influence on local aerosol populations understood.


2011 ◽  
Vol 11 (7) ◽  
pp. 19683-19727 ◽  
Author(s):  
J. H. Kim ◽  
S. S. Yum ◽  
S. Shim ◽  
S.-C. Yoon ◽  
J. G. Hudson ◽  
...  

Abstract. Aerosol size distribution, total concentration (i.e., condensation nuclei (CN) concentration, NCN), cloud condensation nuclei (CCN) concentration (NCCN), hygroscopicity at ~90 % relative humidity (RH) were measured at a background monitoring site at Gosan, Jeju Island, south of the Korea Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurement took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO) on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0 % supersaturations (S), NCN, and geometric mean diameter (Dg) from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China. Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for cloud nucleation (Sc) for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02 % during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07 % and 0.17 ± 0.04 %, respectively, during 2009. Hygroscopicity parameters estimated from the measured Sc were mostly higher than the ones from the measured hygroscopic growth at ~90 % RH. For the 2008 campaign, NCCN at 0.2, 0.6 and 1.0 % S were predicted based on the measured dry particle size distribution and various ways of representing aerosol hygroscopicity. The best closure was obtained when temporally varying and size-resolved hygroscopicity information from HTDMA was used, for which the average relative deviations from the measured values were 19 % for 1.0 % S and 28 % for 0.2 % S. Prescribing a constant hygroscopicity parameter suggested in literature (κ = 0.3) for all sizes and time resulted in the average relative deviations, 25–40 %. When constant hygroscopicity was assumed, the relative deviation tended to increase with decreasing NCCN, which was accompanied by increase of sub-100 nm fraction. These results suggest that hygroscopicity information for aerosols of diameters smaller than 100 nm is crucial for more accurate prediction of NCCN.


2012 ◽  
Vol 12 (24) ◽  
pp. 12037-12059 ◽  
Author(s):  
V.-M. Kerminen ◽  
M. Paramonov ◽  
T. Anttila ◽  
I. Riipinen ◽  
C. Fountoukis ◽  
...  

Abstract. This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN) formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i) the factors controlling atmospheric CCN production and (ii) the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.


2014 ◽  
Vol 14 (24) ◽  
pp. 13423-13437 ◽  
Author(s):  
F. Zhang ◽  
Y. Li ◽  
Z. Li ◽  
L. Sun ◽  
R. Li ◽  
...  

Abstract. Aerosol hygroscopicity and cloud condensation nuclei (CCN) activity under background conditions and during pollution events are investigated during the Aerosol-CCN-Cloud Closure Experiment (AC3Exp) campaign conducted at Xianghe, China in summer 2013. A gradual increase in size-resolved activation ratio (AR) with particle diameter (Dp) suggests that aerosol particles have different hygroscopicities. During pollution events, the activation diameter (Da) measured at low supersaturation (SS) was significantly increased compared to background conditions. An increase was not observed when SS was > 0.4%. The hygroscopicity parameter (κ) was ~ 0.31–0.38 for particles in accumulation mode under background conditions. This range in magnitude of κ was ~ 20%, higher than κ derived under polluted conditions. For particles in nucleation or Aitken mode, κ ranged from 0.20–0.34 for background and polluted cases. Larger particles were on average more hygroscopic than smaller particles. The situation was more complex for heavy pollution particles because of the diversity in particle composition and mixing state. A non-parallel observation CCN closure test showed that uncertainties in CCN number concentration estimates ranged from 30–40%, which are associated with changes in particle composition as well as measurement uncertainties associated with bulk and size-resolved CCN methods. A case study showed that bulk CCN activation ratios increased as total condensation nuclei (CN) number concentrations (NCN) increased on background days. The background case also showed that bulk AR correlated well with the hygroscopicity parameter calculated from chemical volume fractions. On the contrary, bulk AR decreased with increasing total NCN during pollution events, but was closely related to the fraction of the total organic mass signal at m/z 44 (f44), which is usually associated with the particle's organic oxidation level. Our study highlights the importance of chemical composition in determining particle activation properties and underlines the significance of long-term observations of CCN under different atmospheric environments, especially regions with heavy pollution.


2021 ◽  
Author(s):  
Sebastian Wieneke ◽  
Ana Bastos ◽  
Manuela Balzarolo ◽  
José Miguel Barrios ◽  
Ivan Janssens

<p>Sun Induced Chlorophyll Fluorescence (SIF) is considered as a good proxy for photosynthesis given its closer link to the photosynthetic light reactions compared to remote sensing vegetation indices typically used for ecosystem productivity modelling (eg. NDVI). Satellite-based SIF shows significant linear relationships with gross primary production (GPP) from in-situ measurements across sites, biomes and seasons. While SIF can be considered a good proxy for large scale spatial and seasonal variability in GPP, much of the SIF-GPP co-variance can be explained by their common dependence on the absorbed photosynthetically active radiation. Whether SIF can be an equally good proxy for interannual variability in GPP especially during periods of vegetation stress (drought/heat) is, so far, not clear.</p><p>In this study, we evaluate the relationship between satellite-based SIF and in-situ GPP measurements during vegetation stress periods (drought/heat), compared to non-stress periods. GPP is obtained from eddy-covariance measurements from a set of forest sites pre-filtered to ensure homonegeous footprints. SIF is obtained from GOME-2 covering the period 2007-2018. Because of scale mismatch between each site’s footprint (in the order of hundred meters) and the spatial resolution of GOME-2 (ca. 50km), we additionally use SIF from the downscale product from Duveiller et al. 2020 (ca. 5km) and the more recent dataset from TROPOMI (ca. 7 x 3.5 km), covering only the last year of the study period.</p><p>We develop a classification of stress periods that is based on both the occurrence of drought/heat extreme events and the presence of photosynthetic downregulation. We then evaluate the relationship between SIF and GPP and their yields, for different plant functional types and at site-level. We evaluate how these relationships vary depending on environmental conditions and in particular for “stress” versus “non-stress” days.</p><p>Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data, 12, 1101–1116, https://doi.org/10.5194/essd-12-1101-2020, 2020.</p>


Sign in / Sign up

Export Citation Format

Share Document