scholarly journals Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the scale-dependent role of monsoonal flows, the Madden–Julian Oscillation, tropical cyclones, squall lines and cold pools

2015 ◽  
Vol 15 (4) ◽  
pp. 1745-1768 ◽  
Author(s):  
J. S. Reid ◽  
N. D. Lagrosas ◽  
H. H. Jonsson ◽  
E. A. Reid ◽  
W. R. Sessions ◽  
...  

Abstract. In a joint NRL/Manila Observatory mission, as part of the Seven SouthEast Asian Studies program (7-SEAS), a 2-week, late September 2011 research cruise in the northern Palawan archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Niño–Southern Oscillation (ENSO) La Niña year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden–Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol life cycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN < 150 cm−3, non-sea-salt PM2.5 < 1 μg m−3). However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm−3 and non-sea-salt PM2.5 10–25 μg m−3). These cases corresponded with two different mechanisms of convection suppression: lower free-tropospheric dry-air intrusion from the Indian Ocean, and large-scale TC-induced subsidence. Veering vertical wind shear also resulted in aerosol transport into this region being mainly in the marine boundary layer (MBL), although lower free troposphere transport was possible on the western sides of Sumatra and Borneo. At the hourly time scale, particle concentrations were observed to be modulated by integer factors through convection and associated cold pools. Geostationary satellite observations suggest that convection often takes the form of squall lines, which are bowed up to 500 km across the monsoonal flow and 50 km wide. These squall lines, initiated by cold pools from large thunderstorms and likely sustained by a veering vertical wind shear and aforementioned mid-troposphere dry layers, propagated over 1500 km across the entirety of the SCS/ES, effectively cutting large swaths of MBL aerosol particles out of the region. Our conclusion is that while large-scale flow patterns are very important in modulating convection, and hence in allowing long-range transport of smoke and pollution, more short-lived phenomena can modulate cloud condensation nuclei (CCN) concentrations in the region, resulting in pockets of clean and polluted MBL air. This will no doubt complicate large scale comparisons of aerosol–cloud interaction.

2014 ◽  
Vol 14 (14) ◽  
pp. 20521-20584
Author(s):  
J. S. Reid ◽  
N. D. Lagrosas ◽  
H. H. Jonsson ◽  
E. A. Reid ◽  
W. R. Sessions ◽  
...  

Abstract. In a joint NRL/Manila Observatory mission, as part of the 7 SouthEast Asian Studies program (7SEAS), a two-week, late September~2011 research cruise in the northern Palawan Archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a~receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a~narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Nino/Southern Oscillation (ENSO) La Nina year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden–Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol lifecycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN < 150 cm−3, non-sea salt PM2.5=1μg m−3). However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm−3 and non-sea salt PM2.510–25 μg m−3). These cases corresponded with two different mechanisms of convection suppression: lower free-tropospheric dry-air intrusion from the Indian Ocean, and large-scale TC-induced subsidence. Veering vertical wind shear also resulted in aerosol transport into this region being mainly in the marine boundary layer (MBL), although lower free troposphere transport was possible on the western sides of Sumatra and Borneo. At the hourly time scale, particle concentrations were observed to be modulated by integer factors through convection and associated cold pools. Geostationary satellite observations suggest that convection often takes the form of squall lines, which are bowed up to 500 km across the monsoonal flow and 50 km wide. These squall lines, initiated by cold pools from large thunderstorms and likely sustained by a veering vertical wind shear, propagated over 1500 km across the entirety of the SCS/ES-effectively cutting large swaths of MBL aerosol particles out of the region. Our conclusion is that while large-scale flow patterns are very important in modulating convection and hence allowing long range transport of smoke and pollution, more short-lived phenomena can modulate cloud condensation nuclei (CCN) concentrations in the region, resulting in pockets of clean and polluted MBL air.


2021 ◽  
Author(s):  
Sophie Abramian ◽  
Caroline Muller ◽  
Camille Risi

&lt;p&gt;Investigating tropical squall lines with a cloud resolving model&lt;/p&gt;&lt;p&gt;Using a cloud resolving model, we attempt to clarify the physical processes responsible for the organization of deep clouds into squall lines in the tropics. To do so, we impose a vertical wind shear, and investigate the response of deep convection to different shear strengths in radiative convective equilibrium. As the magnitude of the shear increases, the convection becomes more and more organized into a line, perpendicular to the shear. It is due to the interaction of the low-level shear with the cold pools associated with convective downdrafts. Beyond a certain shear, called optimal shear, the line tends to orient at an angle to the shear. The existing literature suggests that this angle conserves the projection of the shear on the direction perpendicular to the squall line near the optimal value, a hypothesis that we further investigate here.&lt;/p&gt;&lt;p&gt;In this work, we propose a systematic method, based on image auto-correlation, to determine the angle of the squall line with respect to the shear. We highlight the existence of the sub-critical and super-critical regime, as predicted by earlier studies. In the sub-critical regime, squall lines are indeed perpendicular to the shear. Yet, angles of squall lines in the super-critical regime do not clearly correspond to the conservation of the projected component of the shear near the optimal value. In particular, squall lines often remain more perpendicular to the shear than expected.&lt;/p&gt;&lt;p&gt;We thus investigate the balance between shear and cold pool winds to explain this difference. Using statistical methods on extreme events, we find that this difference is due to an intensification of cold pool potential energy with shear. Cold pool intensification allows the squall line to better resist to the shear, and thus reduces its angle of orientation. This new feature leads us to conclude that two mechanisms maintain a squall line in wind shear : the orientation of clouds and the intensification of cold pools.&lt;/p&gt;


2017 ◽  
Vol 74 (4) ◽  
pp. 1149-1168 ◽  
Author(s):  
Simon P. de Szoeke ◽  
Eric D. Skyllingstad ◽  
Paquita Zuidema ◽  
Arunchandra S. Chandra

Abstract Cold pools dominate the surface temperature variability observed over the central Indian Ocean (0°, 80°E) for 2 months of research cruise observations in the Dynamics of the Madden–Julian Oscillation (DYNAMO) experiment in October–December 2011. Cold pool fronts are identified by a rapid drop of temperature. Air in cold pools is slightly drier than the boundary layer (BL). Consistent with previous studies, cold pools attain wet-bulb potential temperatures representative of saturated downdrafts originating from the lower midtroposphere. Wind and surface fluxes increase, and rain is most likely within the ~20-min cold pool front. Greatest integrated water vapor and liquid follow the front. Temperature and velocity fluctuations shorter than 6 min achieve 90% of the surface latent and sensible heat flux in cold pools. The temperature of the cold pools recovers in about 20 min, chiefly by mixing at the top of the shallow cold wake layer, rather than by surface flux. Analysis of conserved variables shows mean BL air is composed of 51% air entrained from the BL top (800 m), 22% saturated downdrafts, and 27% air at equilibrium with the ocean surface. The number of cold pools, and their contribution to the BL heat and moisture, nearly doubles in the convectively active phase compared to the suppressed phase of the Madden–Julian oscillation.


Author(s):  
Branden Katona ◽  
Paul Markowski

AbstractStorms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased.


2020 ◽  
Vol 77 (5) ◽  
pp. 1661-1681
Author(s):  
Qingfang Jiang ◽  
Qing Wang ◽  
Shouping Wang ◽  
Saša Gaberšek

Abstract The characteristics of a convective internal boundary layer (CIBL) documented offshore during the East Coast phase of the Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER-EAST) field campaign has been examined using field observations, a coupled mesoscale model (i.e., Navy’s COAMPS) simulation, and a couple of surface-layer-resolving large-eddy simulations (LESs). The Lagrangian modeling approach has been adopted with the LES domain being advected from a cool and rough land surface to a warmer and smoother sea surface by the mean offshore winds in the CIBL. The surface fluxes from the LES control run are in reasonable agreement with field observations, and the general CIBL characteristics are consistent with previous studies. According to the LESs, in the nearshore adjustment zone (i.e., fetch &lt; 8 km), the low-level winds and surface friction velocity increase rapidly, and the mean wind profile and vertical velocity skewness in the surface layer deviate substantially from the Monin–Obukhov similarity theory (MOST) scaling. Farther offshore, the nondimensional vertical wind shear and scalar gradients and higher-order moments are consistent with the MOST scaling. An elevated turbulent layer is present immediately below the CIBL top, associated with the vertical wind shear across the CIBL top inversion. Episodic shear instability events occur with a time scale between 10 and 30 min, leading to the formation of elevated maxima in turbulence kinetic energy and momentum fluxes. During these events, the turbulence kinetic energy production exceeds the dissipation, suggesting that the CIBL remains in nonequilibrium.


Author(s):  
Jake P. Mulholland ◽  
John M. Peters ◽  
Hugh Morrison

AbstractThe influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2019 ◽  
Vol 76 (3) ◽  
pp. 707-727 ◽  
Author(s):  
Yaping Wang ◽  
Christopher A. Davis ◽  
Yongjie Huang

Abstract Idealized simulations are conducted using the Cloud Model version 1 (CM1) to explore the mechanism of tropical cyclone (TC) genesis from a preexisting midtropospheric vortex that forms in radiative–convective equilibrium. With lower-tropospheric air approaching near saturation during TC genesis, convective cells become stronger, along with the intensifying updrafts and downdrafts and the larger area coverage of updrafts relative to downdrafts. Consequently, the low-level vertical mass flux increases, inducing vorticity amplification above the boundary layer. Of interest is that while surface cold pools help organize lower-tropospheric updrafts, genesis still proceeds, only slightly delayed, if subcloud evaporation cooling and cold pool intensity are drastically reduced. More detrimental is the disruption of near saturation through the introduction of weak vertical wind shear. The lower-tropospheric dry air suppresses the strengthening of convection, leading to weaker upward mass flux and much slower near-surface vortex spinup. We also find that surface spinup is similarly inhibited by decreasing surface drag despite the existence of a nearly saturated column, whereas larger drag accelerates spinup. Increased vorticity above the boundary layer is followed by the emergence of a horizontal pressure gradient through the depth of the boundary layer. Then the corresponding convergence resulting from the gradient imbalance in the frictional boundary layer causes vorticity amplification near the surface. It is suggested that near saturation in the lower troposphere is critical for increasing the mass flux and vorticity just above the boundary layer, but it is necessary yet insufficient because the spinup is strongly governed by boundary layer dynamics.


2020 ◽  
Vol 12 (9) ◽  
pp. 1533 ◽  
Author(s):  
Tao Huang ◽  
Steve Hung-lam Yim ◽  
Yuanjian Yang ◽  
Olivia Shuk-ming Lee ◽  
David Hok-yin Lam ◽  
...  

Turbulent mixing is critical in affecting urban climate and air pollution. Nevertheless, our understanding of it, especially in a cloud-topped boundary layer (CTBL), remains limited. High-temporal resolution observations provide sufficient information of vertical velocity profiles, which is essential for turbulence studies in the atmospheric boundary layer (ABL). We conducted Doppler Light Detection and Ranging (LiDAR) measurements in 2019 using the 3-Dimensional Real-time Atmospheric Monitoring System (3DREAMS) to reveal the characteristics of typical daytime turbulent mixing processes in CTBL over Hong Kong. We assessed the contribution of cloud radiative cooling on turbulent mixing and determined the altitudinal dependence of the contribution of surface heating and vertical wind shear to turbulent mixing. Our results show that more downdrafts and updrafts in spring and autumn were observed and positively associated with seasonal cloud fraction. These results reveal that cloud radiative cooling was the main source of downdraft, which was also confirmed by our detailed case study of vertical velocity. Compared to winter and autumn, cloud base heights were lower in spring and summer. Cloud radiative cooling contributed ~32% to turbulent mixing even near the surface, although the contribution was relatively weaker compared to surface heating and vertical wind shear. Surface heating and vertical wind shear together contributed to ~45% of turbulent mixing near the surface, but wind shear can affect up to ~1100 m while surface heating can only reach ~450 m. Despite the fact that more research is still needed to further understand the processes, our findings provide useful references for local weather forecast and air quality studies.


2020 ◽  
Vol 148 (6) ◽  
pp. 2503-2525
Author(s):  
Difei Deng ◽  
Elizabeth A. Ritchie

Abstract Tropical Cyclone Oswald (2013) is considered to be one of the highest-impact storms to make landfall in northern Australia even though it only reached a maximum category 1 intensity on the Australian category scale. After making landfall on the west coast of Cape York Peninsula, Oswald turned southward, and persisted for more than 7 days moving parallel to the coastline as far south as 30°S. As one of the wettest tropical cyclones (TCs) in Australian history, the favorable configurations of a lower-latitude active monsoon trough and two consecutive midlatitude trough–jet systems generally contributed to the maintenance of the Oswald circulation over land and prolonged rainfall. As a result, Oswald produced widespread heavy rainfall along the east coast with three maximum centers near Weipa, Townsville, and Rockhampton, respectively. Using high-resolution WRF simulations, the mechanisms associated with TC Oswald’s rainfall are analyzed. The results show that the rainfall involved different rainfall mechanisms at each stage. The land–sea surface friction contrast, the vertical wind shear, and monsoon trough were mostly responsible for the intensity and location for the first heavy rainfall center on the Cape York Peninsula. The second torrential rainfall near Townsville was primarily a result of the local topography and land–sea frictional convergence in a conditionally unstable monsoonal environment with frictional convergence due to TC motion modulating some offshore rainfall. The third rainfall area was largely dominated by persistent high vertical wind shear forcing, favorable large-scale quasigeostrophic dynamic lifting from two midlatitude trough–jet systems, and mesoscale frontogenesis lifting.


Sign in / Sign up

Export Citation Format

Share Document