scholarly journals Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

2015 ◽  
Vol 15 (1) ◽  
pp. 305-317 ◽  
Author(s):  
Z. M. Loh ◽  
R. M. Law ◽  
K. D. Haynes ◽  
P. B. Krummel ◽  
L. P. Steele ◽  
...  

Abstract. This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September–October–November), rather than winter, maximum for wetland emissions.

2014 ◽  
Vol 14 (15) ◽  
pp. 21189-21221
Author(s):  
Z. M. Loh ◽  
R. M. Law ◽  
K. D. Haynes ◽  
P. B. Krummel ◽  
L. P. Steele ◽  
...  

Abstract. This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September-October-November), rather than winter, maximum for wetland emissions.


2010 ◽  
Vol 23 (15) ◽  
pp. 4121-4132 ◽  
Author(s):  
Dorian S. Abbot ◽  
Itay Halevy

Abstract Most previous global climate model simulations could only produce the termination of Snowball Earth episodes at CO2 partial pressures of several tenths of a bar, which is roughly an order of magnitude higher than recent estimates of CO2 levels during and shortly after Snowball events. These simulations have neglected the impact of dust aerosols on radiative transfer, which is an assumption of potentially grave importance. In this paper it is argued, using the Dust Entrainment and Deposition (DEAD) box model driven by GCM results, that atmospheric dust aerosol concentrations may have been one to two orders of magnitude higher during a Snowball Earth event than today. It is furthermore asserted on the basis of calculations using NCAR’s Single Column Atmospheric Model (SCAM)—a radiative–convective model with sophisticated aerosol, cloud, and radiative parameterizations—that when the surface albedo is high, such increases in dust aerosol loading can produce several times more surface warming than an increase in the partial pressure of CO2 from 10−4 to 10−1 bar. Therefore the conclusion is reached that including dust aerosols in simulations may reconcile the CO2 levels required for Snowball termination in climate models with observations.


2021 ◽  
Author(s):  
Joannes Maasakkers ◽  
Daniel Varon ◽  
Aldís Elfarsdóttir ◽  
Jason McKeever ◽  
Dylan Jervis ◽  
...  

As atmospheric methane concentrations increase at record pace, it is critical to identify individual emission sources with high potential for mitigation. Landfills are responsible for large methane emissions that can be readily abated but have been sparsely observed. Here we leverage the synergy between satellite instruments with different spatiotemporal coverage and resolution to detect and quantify emissions from individual landfill facilities. We use the global surveying Tropospheric Monitoring Instrument (TROPOMI) to identify large emission hot spots, and then zoom in with high-resolution target-mode observations from the GHGSat instrument suite to identify the responsible facilities and characterize their emissions. Using this ‘tip and cue’ approach, we detect and analyze strongly emitting landfills (3-29 t hr−1) in Buenos Aires (Argentina), Delhi (India), Lahore (Pakistan), and Mumbai (India). We find that city-level emissions are 1.6-2.8 times larger than reported in commonly used emission inventories and that the landfills contribute 5-47% of those emissions. Our work demonstrates how complementary satellites enable global detection, identification, and monitoring of methane super-emitters at the facility-level.


2015 ◽  
Vol 12 (13) ◽  
pp. 4029-4049 ◽  
Author(s):  
L. Meng ◽  
R. Paudel ◽  
P. G. M. Hess ◽  
N. M. Mahowald

Abstract. Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which the atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH4 concentration gradients and growth rates. This study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.


The Holocene ◽  
2011 ◽  
Vol 21 (5) ◽  
pp. 735-741 ◽  
Author(s):  
Stephen J. Burns

Recent speleothem records from the tropics of both hemispheres document a gradual decrease in the intensity of the monsoons in the Northern Hemisphere and increase in the Southern Hemisphere monsoons over the Holocene. These changes are a direct response of the monsoons to precession-driven insolation variability. With regard to atmospheric methane, this shift should result in a decrease in Northern Hemisphere tropical methane emissions and increase in Southern Hemisphere emissions. It is plausible that that overall tropical methane production experienced a minimum in the mid-Holocene because of decreased seasonality in rainfall at the margins of the tropics. Changes in tropical methane production alone might, therefore, explain many of the characteristics of Holocene methane concentrations and isotopic chemistry.


2017 ◽  
Author(s):  
Sunil Vadakkepuliyambatta ◽  
Ragnhild B. Skeie ◽  
Gunnar Myhre ◽  
Stig B. Dalsøren ◽  
Anna Silyakova ◽  
...  

Abstract. Greenhouse gas methane trapped in sub-seafloor gas hydrates may play an important role in a potential climate feedback system. The impact of future Arctic Ocean warming on the hydrate stability and its contribution to atmospheric methane concentrations remains an important and unanswered question. Here, we estimate the climate impact of released methane from oceanic gas hydrates in the Arctic to the atmosphere towards the end of the 21st century, integrating hydrate stability and atmospheric modeling. Based on future climate models, we estimate that increasing ocean temperatures over the next 100 years could release up to 17 ± 6 Gt C into the Arctic Ocean. However, the released methane has a limited or minor impact on the global mean surface temperature, contributing only 0.1 % of the projected anthropogenic influenced warming over the 21st century.


2020 ◽  
Author(s):  
Peter Watson ◽  
Sarah Sparrow ◽  
William Ingram ◽  
Simon Wilson ◽  
Drouard Marie ◽  
...  

<p>Multi-thousand member climate model simulations are highly valuable for showing how extreme weather events will change as the climate changes, using a physically-based approach. However, until now, studies using such an approach have been limited to using models with a resolution much coarser than the most modern systems. We have developed a global atmospheric model with 5/6°x5/9° resolution (~60km in middle latitudes) that can be run in the climateprediction.net distributed computing system to produce such large datasets. This resolution is finer than that of many current global climate models and sufficient for good simulation of extratropical synoptic features such as storms. It will also allow many extratropical extreme weather events to be simulated without requiring regional downscaling. We will show that this model's simulation of extratropical weather is competitive with that in other current models. We will also present results from the first multi-thousand member ensembles produced at this resolution, showing the impact of 1.5°C and 2°C global warming on extreme winter rainfall and extratropical cyclones in Europe.</p>


2020 ◽  
Author(s):  
Ioana Ivanciu ◽  
Katja Matthes ◽  
Sebastian Wahl ◽  
Jan Harlaß ◽  
Arne Biastoch

Abstract. The Antarctic ozone hole has led to substantial changes in the Southern Hemisphere atmospheric circulation, such as the strengthening and poleward shift of the mid-latitude westerly jet. Ozone recovery during the twenty-first century is expected to continue to affect the jet's strength and position, leading to changes in the opposite direction compared to the twentieth century and competing with the effect of increasing greenhouse gases. Simulations of the Earth's past and future climate, such as those performed for the Coupled Model Intercomparison Project Phase 6 (CMIP6), require an accurate representation of these ozone effects. Climate models that use prescribed ozone fields lack the important feedbacks between ozone chemistry, radiative heating, dynamics, as well as transport. These limitations ultimately affect their climate response to ozone depletion. This study investigates the impact of prescribing the ozone field recommended for CMIP6 on the simulated effects of ozone depletion in the Southern Hemisphere. We employ a new, state-of the-art coupled climate model, FOCI, to compare simulations in which the CMIP6 ozone is prescribed with simulations in which the ozone chemistry is calculated interactively. At the same time, we compare the roles played by ozone depletion and by increasing concentrations of greenhouse gases in driving changes in the Southern Hemisphere atmospheric circulation, using a series of historical sensitivity simulations. FOCI reliably captures the known effects of ozone depletion, simulating an austral spring and summer intensification of the mid-latitude westerly winds and of the Brewer-Dobson circulation in the Southern Hemisphere. Ozone depletion is the primary driver of these historical circulation changes in FOCI. These changes are weaker in the simulations that prescribe the CMIP6 ozone field. We attribute this weaker response to the missing ozone-radiative-dynamical feedbacks and to a prescribed ozone hole that is displaced compared to the simulated polar vortex, altering the propagation of planetary wave activity. As a result, the dynamical contribution to the ozone-induced austral spring lower stratospheric cooling is suppressed, leading to a weaker cooling trend. Consequently, the intensification of the polar night jet is also weaker in the simulations with prescribed CMIP6 ozone. In addition, the persistence of the Southern Annular Mode is shorter in the prescribed ozone chemistry simulations. These results suggest that climate models which prescribe the CMIP6 ozone field still underestimate the historical ozone-induced dynamical changes in the Southern Hemisphere, while models that calculate the ozone chemistry interactively simulate an improved response to ozone depletion.


2017 ◽  
Vol 17 (22) ◽  
pp. 13999-14023 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Rebecca M. Garland ◽  
Marcus Thatcher ◽  
Willem A. Landman ◽  
Zane Dedekind ◽  
...  

Abstract. The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts of African aerosols on radiative forcing, but local feedbacks between dust aerosols and climate over northern Africa and the Mediterranean may be overestimated.


2017 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Rebecca M. Garland ◽  
Marcus Thatcher ◽  
Willem A. Landman ◽  
Zane Dedekind ◽  
...  

Abstract. The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and so this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based observations across Africa, and additionally provide an analysis of aerosol optical depth at 550 nm (AOD550nm) and Ångström exponent data from thirty-four Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550nm across the continent and the transport of these emissions to regions outside of the continent. Western African sites had the largest AOD550nm values, on average, with the timing and magnitude of AOD550nm maxima dominated by desert dust. The impact of dust on aerosol loading is also apparent at northern African sites, with peak AOD550nm occurring later than the western sites. The seasonal variation in the location of the intertropical convergence zone and associated northward shift in dust transport may be responsible for the shift in timing of maximum AOD550nm between the western and northern African sites. Southern African sites have the lowest AOD550nm values on average, and peak during the biomass burning period. The outflow of these aerosol particles was observed at Ascension Island and Reunion Island AERONET stations. In general, CCAM captures well the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multi-year monthly average AOD550nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except Reunion Island. The timing of peak AOD550nm in southern Africa in the model occurs one month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon and sulfate aerosols. The model’s performance provides confidence for using the model to estimate large-scale regional impacts of African aerosols on radiative forcing, but local feedbacks between dust aerosols and climate over northern Africa and the Mediterranean may be overestimated.


Sign in / Sign up

Export Citation Format

Share Document