scholarly journals Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

2015 ◽  
Vol 15 (2) ◽  
pp. 951-972 ◽  
Author(s):  
Y. P. Pan ◽  
Y. S. Wang

Abstract. Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and selenium were of the same magnitude as their increases in the topsoil of agricultural systems. At a background forest site in Northern China, the total deposition flux of lead observed in this study (14.1 mg m−2 yr−1) was twice that of the critical load calculated for temperate forest ecosystems in Europe. These findings provide baseline data needed for future targeting policies to protect various ecosystems from long-term heavy metal input via atmospheric deposition.

2014 ◽  
Vol 14 (14) ◽  
pp. 20647-20676 ◽  
Author(s):  
Y. P. Pan ◽  
Y. S. Wang

Abstract. Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil and water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatio-temporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at ten sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites. In contrast, the wet deposition exhibited less spatial variation. The seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for K, Ni, As, Pb, Zn, Cd, Se, Ag and Tl, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution and solubility of the particles. We found that atmospheric inputs of Cu, Pb, Zn, Cd, As and Se were of the same magnitude as their increases in the topsoil of agricultural systems. In addition, the total deposition flux of Pb observed at a forest site in this study was twice that of the critical load (7.0 mg m−2 yr−1) calculated for temperate forest ecosystems in Europe. These findings provide baseline data needed for future targeting policies to protect various ecosystems from long-term heavy metal input via atmospheric deposition.


2012 ◽  
Vol 12 (9) ◽  
pp. 23645-23677 ◽  
Author(s):  
Y. P. Pan ◽  
Y. S. Wang ◽  
G. Q. Tang ◽  
D. Wu

Abstract. The increasing anthropogenic emissions of acidic compounds have induced acid deposition accompanied by acidification in the aquatic and terrestrial ecosystems worldwide. However, comprehensive assessment of spatial patterns and long-term trends of acid deposition in China remains a challenge due to a paucity of field-based measurement data, in particular for dry deposition. Here we quantify the sulfur (S) deposition on a regional scale via precipitation, particles and gases during a 3-yr observation campaign at ten selected sites in Northern China. Results show that the total S deposition flux in the target area ranged from 35.0 to 100.7 kg S ha−1 yr−1, categorized as high levels compared to those documented in Europe, North America, and East Asia. The ten-site, 3-yr average total S deposition was 64.8 kg S ha−1 yr−1, with 32% attributed to wet deposition, and the rest attributed to dry deposition. Compared with particulate sulfate, gaseous SO2 was the major contributor of dry-deposited S, contributing approximately 49% to the total flux. Wet deposition of sulfate showed pronounced seasonal variations with maximum in summer and minimum in winter, corresponding to precipitation patterns in Northern China. However, the spatial and inter-annual differences in the wet deposition were not significant, which were influenced by the precipitation amount, scavenging ratio and the concentrations of atmospheric S compounds. In contrast, the relatively large dry deposition of SO2 and sulfate during cold season, especially at industrial areas, was reasonably related to the local emissions from home heating. Although seasonal fluctuations were constant, clear spatial differences were observed in the total S deposition flux and higher values were also found in industrial areas with huge emissions of SO2. These findings indicate that human activity has dramatically altered the atmospheric S deposition and thus regional S cycles. To systematically illustrate the potential effects of acidifying deposition on the receiving environment, we calculated the deposition of "potential acidity" that takes into account the microbial transformation of ammonium to nitrate in the ecosystems, resulting in the release of hydrogen ions. The estimated total "acid equivalents" deposition of S and nitrogen (N) fell within the range of 4.2–11.6 keq ha−1 yr−1, with a ten-site, 3-yr mean of 8.4 keq ha−1 yr−1. This value is significantly higher than that of other regions in the world and exceeds the critical loads for natural ecosystems in Northern China, thus prompting concerns regarding ecological impacts. The contribution of S to total acid deposition was comparable to that of N at most of sites; however, the importance of S on acidification risks was more pronounced in the industrial sites, highlighting that further SO2 abatement from industrial emissions is still needed. Taking these findings and our previous studies together, a multi-pollutant perspective and joint mitigate strategies to abate SO2 and NH3 simultaneously in the target areas are recommended to protect the natural ecosystems from excess acid deposition caused by anthropogenic emissions.


2013 ◽  
Vol 13 (3) ◽  
pp. 1675-1688 ◽  
Author(s):  
Y. P. Pan ◽  
Y. S. Wang ◽  
G. Q. Tang ◽  
D. Wu

Abstract. Atmospheric sulfur (S) deposition via precipitation, particles and gases was investigated at ten sites in Northern China. Measurements were performed continuously between December 2007 and November 2010. The total S deposition flux in the target area ranged from 35.0 to 100.7 kg S ha−1 yr−1, noticeably higher than the values documented in Europe, North America, and East Asia. The ten-site, 3-yr average total S deposition was 64.8 kg S ha−1 yr−1, with 68% attributed to dry deposition (mainly SO2) and the rest to wet deposition. Consequently, the spatial distribution of the total flux was consistent to that of dry deposition, that is, higher values were observed at industrial and urban sites than at agricultural and rural sites. However, the seasonal variation in the total S deposition was not obvious across the entire year because of opposite seasonal trends in wet and dry deposition. It was found that the wet deposition, without significant spatial and interannual differences, was influenced by the volume of precipitation, the air-column concentrations of S compounds and in-cloud scavenging. Similar to the wet deposition, the dry-deposited sulfate was also less dependent on the surface concentration. Nevertheless, the regional differences in SO2 dry deposition were mostly explained by the ambient concentration, which is closely associated with local emissions. As expected, the spatial pattern of total S deposition resembled that of the emission inventory, indicating the dramatic anthropogenic imprints on the regional S budget. Although at most of the study sites the "acid equivalents" deposition of S was comparable to that of nitrogen (N), the importance of S in the acidification risks was more pronounced at the industrial sites. The ten-site, 3-yr mean total "acid equivalents" deposition of S and N was estimated to be 8.4 (range: 4.2–11.6) keq ha−1 yr−1, which exceeds the critical loads for natural ecosystems in Northern China. Taking these findings and our previous studies together, a multi-pollutant perspective and joint mitigation strategies to abate SO2 and NH3 simultaneously in the target area are recommended to protect natural ecosystems from excess acid deposition.


2018 ◽  
Author(s):  
David M. Nelson ◽  
Urumu Tsunogai ◽  
Ding Dong ◽  
Takuya Ohyama ◽  
Daisuke D. Komatsu ◽  
...  

Abstract. Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or come from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ~ +22 and +30 ‰ with higher values during winter and lower values in summer, which suggests greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19–+25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet deposition, which is transported longer distances. These results illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of atmospheric nitrate pollution.


2014 ◽  
Vol 14 (5) ◽  
pp. 2233-2244 ◽  
Author(s):  
J. Zhu ◽  
T. Wang ◽  
R. Talbot ◽  
H. Mao ◽  
X. Yang ◽  
...  

Abstract. A comprehensive measurement study of mercury wet deposition and size-fractionated particulate mercury (HgP) concurrent with meteorological variables was conducted from June 2011 to February 2012 to evaluate the characteristics of mercury deposition and particulate mercury in urban Nanjing, China. The volume-weighted mean (VWM) concentration of mercury in rainwater was 52.9 ng L−1 with a range of 46.3–63.6 ng L−1. The wet deposition per unit area was averaged 56.5 μg m−2 over 9 months, which was lower than that in most Chinese cities, but much higher than annual deposition in urban North America and Japan. The wet deposition flux exhibited obvious seasonal variation strongly linked with the amount of precipitation. Wet deposition in summer contributed more than 80% to the total amount. A part of contribution to wet deposition of mercury from anthropogenic sources was evidenced by the association between wet deposition and sulfates, as well as nitrates in rainwater. The ions correlated most significantly with mercury were formate, calcium, and potassium, which suggested that natural sources including vegetation and resuspended soil should be considered as an important factor to affect the wet deposition of mercury in Nanjing. The average HgP concentration was 1.10 ± 0.57 ng m−3. A distinct seasonal distribution of HgP concentrations was found to be higher in winter as a result of an increase in the PM10 concentration. Overall, more than half of the HgP existed in the particle size range less than 2.1 μm. The highest concentration of HgP in coarse particles was observed in summer, while HgP in fine particles dominated in fall and winter. The size distribution of averaged mercury content in particulates was bimodal, with two peaks in the bins of < 0.7 μm and 4.7–5.8 μm. Dry deposition per unit area of HgP was estimated to be 47.2 μg m−2 using meteorological conditions and a size-resolved particle dry deposition model. This was 16.5% less than mercury wet deposition. Compared to HgP in fine particles, HgP in coarse particles contributed more to the total dry deposition due to higher deposition velocities. Negative correlation between precipitation and the HgP concentration reflected the effect of scavenging of HgP by precipitation.


2016 ◽  
Author(s):  
Karin Haglund ◽  
Björn Claremar ◽  
Anna Rutgersson

Abstract. The shipping sector contributes significantly to increasing emissions of air pollutants. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and deposition of sulphur, nitrogen and particulate matter from the international maritime sector in the Baltic Sea and the North Sea have been made for the years 2009 to 2013. In some areas in the Baltic Sea region the contribution of sulphur dioxide, nitrogen oxide and nitrogen dioxide from international shipping represented up to 80 % of the total near surface concentration of the pollutants. Contributions from shipping of PM2,5 and PM10 were calculated to a maximum of 21 % and 13 % respectively. The contribution of wet deposition of sulphur from shipping was maximum 29 % of the total wet deposition, and for dry deposition the contribution from shipping was maximum 84 %. The highest percentage contribution of wet deposition of nitrogen from shipping reached 28 % and for dry deposition 47 %. The highest concentrations and deposition of the pollutants in the study were found near large ports and shipping lanes. High concentrations were also found over larger areas at sea and over land where many people are exposed. With enhanced regulations for sulphur content in maritime fuel, the cleaning of exhausts through scrubbers has become a possible economic solution. Wet scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown. The resulting potential of future acidification in the Baltic Sea, both from atmospheric deposition and from open-loop scrubber water along the shipping lanes, based on different assumptions about sulphur content in fuel and scrubber usage has been assessed. Shipping is expected to increase globally and in the Baltic Sea region, deposition of sulphur due to shipping will depend on traffic density, emission regulations and technology choices for the emission controls. To evaluate future changes scenarios are developed considering the amount of scrubber technology used. The increase in deposition for the different scenarios differs slightly for the basins in the Baltic Sea. The proportion of ocean acidifying sulphur from ships increases when taking scrubber water into account and the major reason to increasing acidifying nitrogen from ships are due to increasing ship traffic. This study also generates a database of scenarios for atmospheric deposition and scrubber exhaust from the period 2011 to 2050.


2021 ◽  
Author(s):  
Outi Meinander ◽  
Enna Heikkinen ◽  
Jonas Svensson ◽  
Minna Aurela ◽  
Aki Virkkula ◽  
...  

&lt;p&gt;Black carbon (BC) and organic carbon (OC, including brown carbon BrC) aerosols in the atmosphere, and their wet and dry deposition, are important for their climatic and cryospheric effects. Seemingly small amounts of BC in snow, of the order of 10&amp;#8211;100 parts per billion by mass (ppb), have been shown to decrease its albedo by 1&amp;#8211;5 %. Due to the albedo-feedback mechanism, surface darkening accelerates snow and ice melt. In snow, the temporal variability of light absorbing aerosols, such as BC, depends both on atmospheric and cryospheric processes, mostly on sources and atmospheric transport, and dry and wet deposition processes, as well as post-depositional snow processes.&lt;/p&gt;&lt;p&gt;We started a new research activity on BC and OC wet and dry deposition at Helsinki Kumpula SMEAR III station (60&amp;#176;12 N, 24&amp;#176;57 E, Station for Measuring Ecosystem-Atmosphere Relations, https://www.atm.helsinki.fi/SMEAR/index.php/smear-iii). The work included winter, spring, summer and autumn deposition samples during January 2019 - June 2020 (sampling is currently on hold). In winter, wet deposition consisted of snowfall and rainwater samples. Dry deposition samples were separately collected in 2020. For sample collection, a custom-made device, including a heating-system, was applied. The samples were analyzed using the OCEC analyzer of the Finnish Meteorological Institute&amp;#8217;s aerosol laboratory, Helsinki, Finland. The special features in our deposition data are:&amp;#160;&lt;/p&gt;&lt;ul&gt;&lt;li&gt;seasonal BC, OC, and TC (total carbon, the sum of BC and OC) deposition data for an urban background station at 60 &lt;sup&gt;o&lt;/sup&gt;N&lt;/li&gt; &lt;li&gt;precipitation received as either water or snow &amp;#160;&lt;/li&gt; &lt;li&gt;dry deposition samples included (only in 2020)&lt;/li&gt; &lt;li&gt;data as wet and dry deposition rates [concentration/time/area]&lt;/li&gt; &lt;li&gt;simultaneous atmospheric measurements of the SMEAR III station&lt;/li&gt; &lt;/ul&gt;&lt;p&gt;Since our deposition samples are collected manually, the data are non-continuous, yet they allow us to provide deposition rates. Such data can be utilized in various modeling approaches including, for example, climate and long-range transport and deposition modeling. According to our knowledge, these data are the first BC (determined as elemental carbon, EC), OC and TC wet and dry deposition data to represent Finland. Our sampling location, north of 60 deg. N, can be useful for other high-latitude studies and Arctic assessments, too.&lt;/p&gt;&lt;p&gt;&lt;em&gt;Acknowledgements. We gratefully acknowledge support from the Academy of Finland NABCEA-project of Novel Assessment of Black Carbon in the Eurasian Arctic (no. 296302) and the Academy of Finland Flagship funding (grant no. 337552).&lt;/em&gt;&lt;/p&gt;


2019 ◽  
Author(s):  
Ke Dong ◽  
Cheolwoon Woo ◽  
Naomichi Yamamoto

Abstract. Plants disperse spores, pollen, and fragments into the atmosphere. The emitted plant particles return to the pedosphere by sedimentation (dry deposition) and/or by precipitation (wet deposition) and constitute part of the global cycle of substances. However, little is known regarding the taxonomic diversities and flux densities of plant particles deposited from the atmosphere. Here, plant assemblages were examined in atmospheric deposits collected in Seoul in South Korea. A custom-made automatic sampler was used to collect dry and wet deposition samples for which plant assemblages and quantities were determined using high-throughput sequencing and quantitative PCR with universal plant-specific primers targeting the internal transcribed spacer 2 (ITS2) region. Dry deposition was dominant for atmospheric deposition of plant particles (87 %). The remaining 13 % was deposited by precipitation, i.e., wet deposition, via rainout (in-cloud scavenging) and/or washout (below-cloud scavenging). Plant assemblage structures did not differ significantly between dry and wet deposition, indicating that washout, which is likely taxon-independent, predominated rainout, which is likely taxon-dependent, for wet deposition of atmospheric plant particles. A small number of plant genera were detected only in wet deposition, indicating that they might be specifically involved in precipitation through acting as nucleation sites in the atmosphere. Future interannual monitoring will control for the seasonality of atmospheric plant assemblages observed at our sampling site. Future global monitoring is also proposed to investigate geographical differences and investigate whether endemic species are involved in plant-mediated bioprecipitation in regional ecological systems.


2014 ◽  
Vol 11 (19) ◽  
pp. 5621-5635 ◽  
Author(s):  
C. Guieu ◽  
C. Ridame ◽  
E. Pulido-Villena ◽  
M. Bressac ◽  
K. Desboeufs ◽  
...  

Abstract. By bringing new nutrients and particles to the surface ocean, atmospheric deposition impacts biogeochemical cycles. The extent to which those changes are modifying the carbon balance in oligotrophic environments such as the Mediterranean Sea that receives important Saharan dust fluxes is unknown. The DUNE (DUst experiment in a low Nutrient, low chlorophyll Ecosystem) project provides the first attempt to evaluate the changes induced in the carbon budget of a large body of oligotrophic waters after simulated Saharan dust wet or dry deposition events, allowing us to measure (1) the metabolic fluxes while the particles are sinking and (2) the particulate organic carbon export. Here we report the results for the three distinct artificial dust seeding experiments simulating wet or dry atmospheric deposition onto large mesocosms (52 m3) that were conducted in the oligotrophic waters of the Mediterranean Sea in the summers of 2008 and 2010. Although heterotrophic bacteria were found to be the key players in the response to dust deposition, net primary production increased about twice in case of simulated wet deposition (that includes anthropogenic nitrogen). The dust deposition did not produce a shift in the metabolic balance as the tested waters remained net heterotrophic (i.e., net primary production to bacteria respiration ratio <1) and in some cases the net heterotrophy was even enhanced by the dust deposition. The change induced by the dust addition on the total organic carbon pool inside the mesocosm over the 7 days of the experiments, was a carbon loss dominated by bacteria respiration that was at least 5–10 times higher than any other term involved in the budget. This loss of organic carbon from the system in all the experiments was particularly marked after the simulation of wet deposition. Changes in biomass were mostly due to an increase in phytoplankton biomass but when considering the whole particulate organic carbon pool it was dominated by the organic carbon aggregated to the lithogenic particles still in suspension in the mesocosm at the end of the experiment. Assuming that the budget is balanced, the dissolved organic carbon (DOC) pool was estimated by the difference between the total organic carbon and the particulate organic carbon (POC) pool. The partitioning between dissolved and particulate organic carbon was dominated by the dissolved pool with a DOC consumption over 7 days of ∼1 μmol C L−1 d−1 (dry deposition) to ∼2–5 μmol C L−1 d−1 (wet deposition). This consumption in the absence of any allochthonous inputs in the closed mesocosms meant a small <10% decrease of the initial DOC stock after a dry deposition but a ∼30–40% decrease of the initial DOC stock after wet deposition. After wet deposition, the tested waters, although dominated by heterotrophy, were still maintaining a net export (corrected from controls) of particulate organic carbon (0.5 g in 7 days) even in the absence of allochthonous carbon inputs. This tentative assessment of the changes in carbon budget induced by a strong dust deposition indicates that wet deposition by bringing new nutrients has higher impact than dry deposition in oligotrophic environments. In the western Mediterranean Sea, the mineral dust deposition is dominated by wet deposition and one perspective of this work is to extrapolate our numbers to time series of deposition during similar oligotrophic conditions to evaluate the overall impact on the carbon budget at the event and seasonal scale in the surface waters of the northwestern Mediterranean Sea. These estimated carbon budgets are also highlighting the key processes (i.e., bacterial respiration) that need to be considered for an integration of atmospheric deposition in marine biogeochemical modeling.


2017 ◽  
Vol 17 (14) ◽  
pp. 8999-9017 ◽  
Author(s):  
Viral Shah ◽  
Lyatt Jaeglé

Abstract. Oxidized mercury (Hg(II)) is chemically produced in the atmosphere by oxidation of elemental mercury and is directly emitted by anthropogenic activities. We use the GEOS-Chem global chemical transport model with gaseous oxidation driven by Br atoms to quantify how surface deposition of Hg(II) is influenced by Hg(II) production at different atmospheric heights. We tag Hg(II) chemically produced in the lower (surface–750 hPa), middle (750–400 hPa), and upper troposphere (400 hPa–tropopause), in the stratosphere, as well as directly emitted Hg(II). We evaluate our 2-year simulation (2013–2014) against observations of Hg(II) wet deposition as well as surface and free-tropospheric observations of Hg(II), finding reasonable agreement. We find that Hg(II) produced in the upper and middle troposphere constitutes 91 % of the tropospheric mass of Hg(II) and 91 % of the annual Hg(II) wet deposition flux. This large global influence from the upper and middle troposphere is the result of strong chemical production coupled with a long lifetime of Hg(II) in these regions. Annually, 77–84 % of surface-level Hg(II) over the western US, South America, South Africa, and Australia is produced in the upper and middle troposphere, whereas 26–66 % of surface Hg(II) over the eastern US, Europe, and East Asia, and South Asia is directly emitted. The influence of directly emitted Hg(II) near emission sources is likely higher but cannot be quantified by our coarse-resolution global model (2° latitude  ×  2.5° longitude). Over the oceans, 72 % of surface Hg(II) is produced in the lower troposphere because of higher Br concentrations in the marine boundary layer. The global contribution of the upper and middle troposphere to the Hg(II) dry deposition flux is 52 %. It is lower compared to the contribution to wet deposition because dry deposition of Hg(II) produced aloft requires its entrainment into the boundary layer, while rain can scavenge Hg(II) from higher altitudes more readily. We find that 55 % of the spatial variation of Hg wet deposition flux observed at the Mercury Deposition Network sites is explained by the combined variation of precipitation and Hg(II) produced in the upper and middle troposphere. Our simulation points to a large role of the dry subtropical subsidence regions. Hg(II) present in these regions accounts for 74 % of Hg(II) at 500 hPa over the continental US and more than 60 % of the surface Hg(II) over high-altitude areas of the western US. Globally, it accounts for 78 % of the tropospheric Hg(II) mass and 61 % of the total Hg(II) deposition. During the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign, the contribution of Hg(II) from the dry subtropical regions was found to be 75 % when measured Hg(II) exceeded 250 pg m−3. Hg(II) produced in the upper and middle troposphere subsides in the anticyclones, where the dry conditions inhibit the loss of Hg(II). Our results highlight the importance the subtropical anticyclones as the primary conduits for the production and export of Hg(II) to the global atmosphere.


Sign in / Sign up

Export Citation Format

Share Document