scholarly journals Revisiting the steering principal of tropical cyclone motion in a numerical experiment

2016 ◽  
Vol 16 (23) ◽  
pp. 14925-14936 ◽  
Author(s):  
Liguang Wu ◽  
Xiaoyu Chen

Abstract. The steering principle of tropical cyclone motion has been applied to tropical cyclone forecasting and research for nearly 100 years. Two fundamental questions remain unanswered. One is why the steering flow plays a dominant role in tropical cyclone motion, and the other is when tropical cyclone motion deviates considerably from the steering. A high-resolution numerical experiment was conducted with the tropical cyclone in a typical large-scale monsoon trough over the western North Pacific. The simulated tropical cyclone experiences two eyewall replacement processes. Based on the potential vorticity tendency (PVT) diagnostics, this study demonstrates that the conventional steering, which is calculated over a certain radius from the tropical cyclone center in the horizontal and a deep pressure layer in the vertical, plays a dominant role in tropical cyclone motion since the contributions from other processes are largely cancelled out due to the coherent structure of tropical cyclone circulation. Resulting from the asymmetric dynamics of the tropical cyclone inner core, the trochoidal motion around the mean tropical cyclone track cannot be accounted for by the conventional steering. The instantaneous tropical cyclone motion can considerably deviate from the conventional steering that approximately accounts for the combined effect of the contribution of the advection of the symmetric potential vorticity component by the asymmetric flow and the contribution from the advection of the wave-number-one potential vorticity component by the symmetric flow.

2016 ◽  
Author(s):  
Liguang Wu ◽  
Xiaoyu Chen

Abstract. The steering principle of tropical cyclone motion has been applied to tropical cyclone forecast and research for nearly 100 years. Two fundamental questions remain unanswered. One is why the effect of steering plays a dominant role in tropical cyclone motion and the other is when tropical cyclone motion deviates considerably from the steering. A high-resolution numerical experiment was conducted with the tropical cyclone in a typical large-scale monsoon trough over the western North Pacific. The simulated tropical cyclone experiences two eyewall replacement processes. Based on the potential vorticity tendency (PVT) paradigm for tropical cyclone motion, this study demonstrates that the conventional steering, which is calculated over a certain radius from the tropical cyclone center in the horizontal and a deep pressure layer in the vertical, is not literally the steering or the advection of the symmetric potential vorticity component associated with a tropical cyclone by the asymmetric flow. The conventional steering also contains the contribution from the advection of the wavenumber-one potential vorticity component by the symmetric flow. The contributions from other processes are largely cancelled due to the coherent structure of tropical cyclone circulation and thus the conventional steering plays a dominant role. The trochoidal motion around the mean tropical cyclone track with amplitudes smaller than the eye radius and periods of several hours cannot be accounted for by the effect of the conventional steering and thus the instantaneous tropical cyclone motion can considerably derivate from the conventional steering.


2009 ◽  
Vol 137 (3) ◽  
pp. 852-862 ◽  
Author(s):  
Chun-Chieh Wu ◽  
Shin-Gan Chen ◽  
Jan-Huey Chen ◽  
Kun-Hsuan Chou ◽  
Po-Hsiung Lin

Abstract Targeted observation is one of the most important research and forecasting issues for improving tropical cyclone predictability. A new parameter [i.e., the adjoint-derived sensitivity steering vector (ADSSV)] has been proposed and adopted as one of the targeted observing strategies in the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The ADSSV identifies the sensitive areas at the observing time to the steering flow at the verifying time through the adjoint calculation. In this study, the ADSSV is calculated from the nonlinear forecast model of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint to interpret the dynamical processes in the interaction between Typhoon Shanshan (2006) and the midlatitude trough. The ADSSV results imply that high-sensitivity regions affecting the motion of Typhoon Shanshan are located at the edge of the subtropical high and the 500-hPa midlatitude trough over northern central China. These ADSSV signals are in very good agreement with the quantitative evaluation based on the potential vorticity (PV) diagnosis. The vertical structure of the ADSSV is also shown for more physical insights into the typhoon–trough interaction. The maximum ADSSV occurs at 800–500 hPa to the southeast of Shanshan (associated with the subtropical high), while distinct ADSSV signals are located upstream of the storm center at about 500–300 hPa (associated with the mid- to upper-tropospheric midlatitude trough). Overall, it is demonstrated that the ADSSV features can well capture the signal of the large-scale trough feature affecting the motion of Shanshan, which can also be well validated from the PV analysis.


2011 ◽  
Vol 139 (7) ◽  
pp. 2218-2232 ◽  
Author(s):  
Xiaohao Qin ◽  
Mu Mu

Abstract Three adaptive approaches for tropical cyclone prediction are compared in this study: the conditional nonlinear optimal perturbation (CNOP) method, the first singular vector (FSV) method, and the ensemble transform Kalman filter (ETKF) method. These approaches are compared for 36-h forecasts of three northwest Pacific tropical cyclones (TCs): Matsa (2005), Nock-Ten (2004), and Morakot (2009). The sensitive regions identified by each method are obtained. The CNOPs form an annulus around the storm at the targeting time, the FSV targets areas north of the storm, and the ETKF closely targets the typhoon location itself. The sensitive results of both the CNOPs and FSV collocate well with the steering flow between the subtropical high and the TCs. Furthermore, the regions where the convection is strong are targeted by the CNOPs. Relatively speaking, the ETKF sensitive results reflect the large-scale flow. To identify the most effective adaptive observational network, numerous probes or flights were tested arbitrarily for the ETKF method or according to the calculated sensitive regions of the CNOP and FSV methods. The results show that the sensitive regions identified by these three methods are more effective for adaptive observations than the other regions. In all three cases, the optimal adaptive observational network identified by the CNOP and ETKF methods results in similar forecast improvements in the verification region at the verification time, while the improvement using the FSV method is minor.


2008 ◽  
Vol 136 (12) ◽  
pp. 4593-4611 ◽  
Author(s):  
Chung-Chuan Yang ◽  
Chun-Chieh Wu ◽  
Kun-Hsuan Chou ◽  
Chia-Ying Lee

Abstract A cyclonic loop was observed in the track of Typhoon Fungwong (2002) when it was about 765 n mi from Supertyphoon Fengshen (2002). It is shown that Fungwong’s special path is associated with the circulation of Fengshen, and such an association is regarded as an indication of binary interaction. In this paper, the binary interaction between Fengshen and Fungwong is studied based on the potential vorticity diagnosis. The impacts of large-scale flow fields on their motions are also investigated. Furthermore, the sensitivity of the storm characteristics to the binary interaction is demonstrated by the mesoscale numerical model simulations with different sizes and intensities for the initial bogused storms. Results of the study show that before Fungwong and Fengshen interacted with each other, their motions were governed by the large-scale environmental flow, that is, mainly associated with the subtropical high. During this binary interaction, Fungwong’s looping is partly attributed to Fengshen’s steering flow. This pattern shows up first as a case of one-way interaction in the early period, and then develops into a mutual interaction during the later stages. The numerical experiments show the sensitivity of the storm size and intensity to the binary interaction, implicating that a good representation of the initial storm vortex is important for the prediction of binary storms. Further analyses also indicate the influence of the monsoon trough and subtropical high systems on the binary interaction. These results provide some new insights into the motions of nearby typhoons embedded in the monsoon circulation.


2006 ◽  
Vol 63 (11) ◽  
pp. 2898-2914 ◽  
Author(s):  
Da-Lin Zhang ◽  
Chanh Q. Kieu

Abstract Although the forced secondary circulations (FSCs) associated with hurricane-like vortices have been previously examined, understanding is still limited to idealized, axisymmetric flows and forcing functions. In this study, the individual contributions of latent heating, frictional, and dry dynamical processes to the FSCs of a hurricane vortex are separated in order to examine how a hurricane can intensify against the destructive action of vertical shear and how a warm-cored eye forms. This is achieved by applying a potential vorticity (PV) inversion and quasi-balanced omega equations system to a cloud-resolving simulation of Hurricane Andrew (1992) during its mature stage with the finest grid size of 6 km. It is shown that the latent heating FSC, tilting outward with height, acts to oppose the shear-forced vertical tilt of the storm, and part of the upward mass fluxes near the top of the eyewall is detrained inward, causing the convergence aloft and subsidence warming in the hurricane eye. The friction FSC is similar to that of the Ekman pumping with its peak upward motion occurring near the top of the planetary boundary layer (PBL) in the eye. About 40% of the PBL convergence is related to surface friction and the rest to latent heating in the eyewall. In contrast, the dry dynamical forcing is determined by vertical shear and system-relative flow. When an axisymmetric balanced vortex is subjected to westerly shear, a deep countershear FSC appears across the inner-core region with the rising (sinking) motion downshear (upshear) and easterly sheared horizontal flows in the vertical. The shear FSC is shown to reduce the destructive roles of the large-scale shear imposed, as much as 40%, including its forced vertical tilt. Moreover, the shear FSC intensity is near-linearly proportional to the shear magnitude, and the wavenumber-1 vertical motion asymmetry can be considered as the integrated effects of the shear FSCs from all the tropospheric layers. The shear FSC can be attributed to the Laplacian of thermal advection and the temporal and spatial variations of centrifugal force in the quasi-balanced omega equation, and confirms the previous finding of the development of wavenumber-1 cloud asymmetries in hurricanes. Hurricane eye dynamics are presented by synthesizing the latent heating FSC with previous studies. The authors propose to separate the eye formation from maintenance processes. The upper-level inward mass detrainment forces the subsidence warming (and the formation of an eye), the surface pressure fall, and increased rotation in the eyewall. This increased rotation will induce an additional vertical pressure gradient force to balance the net buoyancy generated by the subsidence warming for the maintenance of the hurricane eye. In this sense, the negative vertical shear in tangential wind in the eyewall should be considered as being forced by the subsidence warming, and maintained by the rotation in the eyewall.


2016 ◽  
Vol 144 (3) ◽  
pp. 1179-1202 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
Frank Roux

Abstract This study is part of the efforts undertaken to resolve the “bad trough/good trough” issue for tropical cyclone (TC) intensity changes and to improve the prediction of these challenging events. Sensitivity experiments are run at 8-km resolution with vortex bogusing to extend the previous analysis of a real case of TC–trough interaction (Dora in 2007). The initial position and intensity of the TC are modified, leaving the trough unchanged to describe a realistic environment. Simulations are designed to analyze the sensitivity of TC prediction to both the variety of TC–trough configurations and the current uncertainty in model analysis of TC intensity and position. Results show that TC intensification under upper-level forcing is greater for stronger vortices. The timing and geometry of the interaction between the two cyclonic potential vorticity anomalies associated with the cutoff low and the TC also play a major role in storm intensification. The intensification rate increases when the TC (initially located 12° northwest of the trough) is displaced 1° closer. By allowing a gradual deformation and equatorward tilting of the trough, both scenarios foster an extended “inflow channel” of cyclonic vorticity at midlevels toward the vortex inner core. Conversely, unfavorable interaction is found for vortices displaced 3° or 4° east or northeast. Variations in environmental forcing relative to the reference simulation illustrate that the relationship between intensity change and the 850–200-hPa wind shear is not systematic and that the 200-hPa divergence, 335–350-K mean potential vorticity, or 200-hPa relative eddy momentum fluxes may be better predictors of TC intensification during TC–trough interactions.


2020 ◽  
Author(s):  
Liguang Wu

<p>Extreme updrafts (stronger than 10 m s-1) have been observed in the tropical cyclone core region, which have profound implications to tropical cyclone intensification and structure change. Since extreme updrafts in the tropical cyclone are difficult to observe, their features and the associated mechanisms for formation and influences on tropical cyclones remain poorly understood. This study presents an analysis of extreme updrafts in a strong tropical cyclone that was simulated with the large-eddy simulation technique and the finest grid spacing of 37 meters. The simulated tropical cyclone experiences the vertical wind shear of about 5 m s-1 in a typical large-scale evironment in the western North Pacific. The simulated extreme updrafts in the inner core region exhibit the high frequency at the altitudes of ~ 750 m, 6.5 km and 13 km. The extreme updrafts in the inflow and outflow layers are closely associated with the Richardson Number of less than 0.25, indicating their relationship with severe turbulence caused by strong vertical wind shears. The extreme updrafts in the middle layer are associated with the strong convective activity. The details of the structures of the extreme updrafts are discussed.</p>


2012 ◽  
Vol 25 (2) ◽  
pp. 657-673 ◽  
Author(s):  
Angela J. Colbert ◽  
Brian J. Soden

Abstract This study investigates the relationship between tropical cyclone (TC) tracks and climatological variations in large-scale environmental parameters associated with the TC steering flow. By using the Atlantic Ocean hurricane database for 1950–2010, TCs that form in the main development region (MDR) are categorized into one of three track types: straight moving, recurving landfall, or recurving ocean. As expected, the straight-moving storms are associated with a westward extension and strengthening of the subtropical high, whereas the recurving ocean storms are associated with a weakening of the high. The presence of El Niño conditions in the tropical Pacific Ocean is shown to be associated with a weakening of the high, an increase in the percentage of recurving ocean TCs, and a decrease in the percentage of recurving landfall TCs. Positive phases of the Atlantic Meridional Mode are associated with an increase in the percentage of recurving ocean TCs and a decrease in the percentage of straight-moving TCs. Synthetic tracks are simulated for each storm using a beta and advection model. Sensitivity experiments using both observed and uniformly seeded genesis locations indicate that the path of straight-moving TCs is largely a reflection of their tendency to form in the southwestern portion of the MDR rather than of differences in steering flow. These experiments also suggest that the shift in TC tracks associated with El Niño/La Niña conditions is largely attributable to changes in the steering flow, whereas the track changes associated with variations in the Atlantic Meridional Mode are due to a systematic shift in genesis location.


2019 ◽  
Vol 147 (8) ◽  
pp. 2717-2737 ◽  
Author(s):  
Adrien Colomb ◽  
Tarik Kriat ◽  
Marie-Dominique Leroux

Abstract In late March 2014, very intense Tropical Cyclone Hellen threatened the Comoros Archipelago and the Madagascan northwest coastline as it became one of the strongest tropical cyclones (TCs) ever observed over the Mozambique Channel. Its steep intensity changes were not well anticipated by operational forecasting models or by La Reunion regional specialized meteorological center forecasters. In particular, the record-setting rapid weakening over the open ocean was not supported by usual large-scale predictors. AROME, a new nonhydrostatic finescale model, is able to closely reproduce these wide intensity changes. When benchmarked against available observations, the model is also consistent in terms of inner-core structure, environmental features, track, and intensity. In the simulation, a northwesterly 400-hPa environmental wind is associated with unsaturated air, while the classic 200–850-hPa wind shear remains weak, and does not suggest a specifically unfavorable environment. The 400-hPa constraint affects the simulated storm through two pathways. Air with low equivalent potential temperature (θe) is flushed downward into the inflow layer in the upshear semicircle, triggering the decay of the storm. Then, direct erosion of the upper half of the warm core efficiently increases the surface pressure and also plays an instrumental role in the rapid weakening. When the storm gets closer to the Madagascan coastline, low-θe air can be directly advected within the inflow layer. Results illustrate on a real TC case the recently proposed paradigm for TC intensity modification under vertical wind shear and highlight the need for innovative tools to assess the impact of wind shear at all vertical levels.


2010 ◽  
Vol 23 (4) ◽  
pp. 868-886 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the modulation of tropical cyclone (TC) activity by the Madden–Julian oscillation (MJO) in the Fiji, Samoa, and Tonga regions (FST region), using Joint Typhoon Warning Center best-track cyclone data and the MJO index developed by Wheeler and Hendon. Results suggest strong MJO–TC relationships in the FST region. The TC genesis patterns are significantly altered over the FST region with approximately 5 times more cyclones forming in the active phase than in the inactive phase of the MJO. This modulation is further strengthened during El Niño periods. The large-scale environmental conditions (i.e., low-level relative vorticity, upper-level divergence, and vertical wind shear) associated with TC genesis show a distinct patterns of variability for the active and inactive MJO phases. The MJO also has a significant effect on hurricane category and combined gale and storm category cyclones in the FST region. The occurrences of both these cyclone categories are increased in the active phase of the MJO, which is associated with enhanced convective activity. The TCs in the other MJO phases where convective activity is relatively low, however, show a consistent pattern of increase in hurricane category cyclones and a concomitant decrease in gale and storm category cyclones. Finally, TC tracks in different MJO phases are also objectively described using a cluster analysis technique. Patterns seen in the clustered track regimes are well explained here in terms of 700–500-hPa mean steering flow.


Sign in / Sign up

Export Citation Format

Share Document