scholarly journals Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field

2017 ◽  
Vol 17 (8) ◽  
pp. 5477-5500 ◽  
Author(s):  
Carolin Klinger ◽  
Bernhard Mayer ◽  
Fabian Jakub ◽  
Tobias Zinner ◽  
Seung-Bu Park ◽  
...  

Abstract. We investigate the effects of thermal radiation on cloud development in large-eddy simulations (LESs) with the UCLA-LES model. We investigate single convective clouds (driven by a warm bubble) at 50 m horizontal resolution and a large cumulus cloud field at 50 and 100 m horizontal resolutions. We compare the newly developed 3-D Neighboring Column Approximation with the independent column approximation and a simulation without radiation and their respective impact on clouds. Thermal radiation causes strong local cooling at cloud tops accompanied by a modest warming at the cloud bottom and, in the case of the 3-D scheme, also cloud side cooling. 3-D thermal radiation causes systematically larger cooling when averaged over the model domain. In order to investigate the effects of local cooling on the clouds and to separate these local effects from a systematically larger cooling effect in the modeling domain, we apply the radiative transfer solutions in different ways. The direct effect of heating and cooling at the clouds is applied (local thermal radiation) in a first simulation. Furthermore, a horizontal average of the 1-D and 3-D radiation in each layer is used to study the effect of local cloud radiation as opposed to the domain-averaged effect. These averaged radiation simulations exhibit a cooling profile with stronger cooling in the cloudy layers. In a final setup, we replace the radiation simulation by a uniform cooling of 2.6 K day−1. To focus on the radiation effects themselves and to avoid possible feedbacks, we fixed surface fluxes of latent and sensible heat and omitted the formation of rain in our simulations. Local thermal radiation changes cloud circulation in the single cloud simulations, as well as in the shallow cumulus cloud field, by causing stronger updrafts and stronger subsiding shells. In our cumulus cloud field simulation, we find that local radiation enhances the circulation compared to the averaged radiation applications. In addition, we find that thermal radiation triggers the organization of clouds in two different ways. First, local interactive radiation leads to the formation of cell structures; later on, larger clouds develop. Comparing the effects of 3-D and 1-D thermal radiation, we find that organization effects of 3-D local thermal radiation are usually stronger than the 1-D counterpart. Horizontally averaged radiation causes more clouds and deeper clouds than a no radiation simulation but, in general less-organized clouds than in the local radiation simulations. Applying a constant cooling to the simulations leads to a similar development of the cloud field as in the case of averaged radiation, but less water condenses overall in the simulation. Generally, clouds contain more liquid water if radiation is accounted for. Furthermore, thermal radiation enhances turbulence and mixing as well as the size and lifetime of clouds. Local thermal radiation produces larger clouds with longer lifetimes. The cloud fields in the 100 and 50 m resolution simulations develop similarly; however, 3-D local effects are stronger in the 100 m simulations which might indicate a limit of our 3-D radiation parameterization.

2016 ◽  
Author(s):  
Carolin Klinger ◽  
Bernhard Mayer ◽  
Fabian Jakub ◽  
Tobias Zinner ◽  
Seungbu Park ◽  
...  

Abstract. We investigate the effects of thermal radiation on cloud development in an idealized setup in large-eddy simulations with the UCLA-LES model. We investigate single convective clouds (driven by a warm bubble) and a large cumulus cloud field at 50 m horizontal resolution. We compare the newly developed 3D "neighboring column approximation" with the independent column approximation and a simulation without radiation and their respective impact on clouds. Thermal radiation causes strong local cooling at cloud tops accompanied by a modest warming at the cloud bottom, and in the case of a 3D scheme, also cloud side cooling. 3D thermal radiation causes systematically larger cooling when averaged over the model domain. In order to investigate the effects of local cooling on the clouds and to separate these local effects from a systematically larger cooling effect in the modeling domain, we apply the radiative transfer solutions in different ways. The direct effect of heating and cooling at the clouds is applied (interactive thermal radiation) in a first simulation. Furthermore, a slab-averaged applications of the 1D and 3D radiation is used to study the effect of local cloud radiation as opposed to the domain averaged effect. These simulations exhibit a cooling profile, with stronger cooling in the cloudy layers. In a final setup, we replace the radiation simulation by a uniform cooling of 2.6 K/d. For the simulations of isolated single cloud, or the cumulus cloud field with interactive radiation, we find that thermal radiation changes cloud circulation, by causing stronger updrafts and stronger subsiding shells. In our cumulus cloud field simulation we find that interactive radiation, acting locally on clouds enhances the circulation compared to the averaged radiation applications. In addition we find that thermal radiation triggers the organization of clouds. Comparing the effects of 3D and 1D thermal radiation, we find that organization effects of 3D thermal radiation are usually stronger than the 1D counterpart (either interactive or averaged). Interactive radiation leads to an earlier onset of the organization both in 1D and 3D compared to the averaged radiation application. Applying a constant cooling to the simulations leads to a similar development of the cloud field as in the case of averaged radiation, but less water condenses overall in the simulation. Generally, clouds contain more liquid water if radiation is accounted for. Furthermore, thermal radiation enhances turbulence and mixing as well as the size and lifetime of clouds. Interactive thermal radiation produces larger clouds with longer lifetimes.


2021 ◽  
Vol 21 (5) ◽  
pp. 3275-3288
Author(s):  
Jule Radtke ◽  
Thorsten Mauritsen ◽  
Cathy Hohenegger

Abstract. The response of shallow trade cumulus clouds to global warming is a leading source of uncertainty in projections of the Earth's changing climate. A setup based on the Rain In Cumulus over the Ocean field campaign is used to simulate a shallow trade wind cumulus field with the Icosahedral Nonhydrostatic Large Eddy Model in a control and a perturbed 4 K warmer climate, while degrading horizontal resolution from 100 m to 5 km. As the resolution is coarsened, the base-state cloud fraction increases substantially, especially near cloud base, lateral mixing is weaker, and cloud tops reach higher. Nevertheless, the overall vertical structure of the cloud layer is surprisingly robust across resolutions. In a warmer climate, cloud cover reduces, alone constituting a positive shortwave cloud feedback: the strength correlates with the amount of base-state cloud fraction and thus is stronger at coarser resolutions. Cloud thickening, resulting from more water vapour availability for condensation in a warmer climate, acts as a compensating feedback, but unlike the cloud cover reduction it is largely resolution independent. Therefore, refining the resolution leads to convergence to a near-zero shallow cumulus feedback. This dependence holds in experiments with enhanced realism including precipitation processes or warming along a moist adiabat instead of uniform warming. Insofar as these findings carry over to other models, they suggest that storm-resolving models may exaggerate the trade wind cumulus cloud feedback.


2020 ◽  
Author(s):  
Jule Radtke ◽  
Thorsten Mauritsen ◽  
Cathy Hohenegger

Abstract. The response of shallow trade cumulus clouds to global warming is a leading source of uncertainty to interpretations and projections of the Earth's changing climate. A setup based on the Rain In Cumulus over the Ocean field campaign is used to simulate a shallow trade wind cumulus field with the Icosahedral Non-hydrostatic Large Eddy Model in a control and a perturbed 4 K warmed climate, while degrading horizontal resolution from 100 m to 5 km. As the resolution is coarsened the basic state cloud fraction increases substantially, especially at cloud base, lateral mixing is weaker and cloud tops reach higher. Nevertheless, the overall vertical structure of the cloud layer is surprisingly robust across resolutions. In a warmer climate, cloud cover reduces, alone constituting a positive shortwave cloud feedback: the strength correlates with the amount of basic state cloud fraction, thus is stronger at coarser resolutions. Cloud thickening, resulting from more water vapor availability for condensation in a warmer climate, acts as a compensating feedback, but unlike the cloud cover reduction it is largely resolution independent. Therefore, refining the resolution leads to convergence to a near-zero shallow cumulus feedback. This dependence holds in experiments with enhanced realism including precipitation processes or warming along a moist adiabat instead of uniform warming. Insofar as these findings carry over to other models, they suggest that storm resolving models may exaggerate the trade wind cumulus cloud feedback.


Author(s):  
Pooja P Humane ◽  
Vishwambhar S Patil ◽  
Amar B Patil

The flow of Casson–Williamson fluid on a stretching surface is considered for the study. The movement of fluid is examined under the effect of external magnetic field, thermal radiation and chemical consequences. The model is formed by considering all the physical aspects responsible for the physical mechanism. The formed mathematical model (partial differential equation) is numerically solved after transforming it into an ordinary one (ordinary differential equation) via similarity invariants. The physical mechanism for velocity, temperature, and concentration is examined through the associated parameters like radiation index, Williamson and Casson parameter, suction/injection parameter, porosity index, and chemical reaction parameter.


2011 ◽  
Vol 677 ◽  
pp. 417-444 ◽  
Author(s):  
S. GHOSH ◽  
R. FRIEDRICH ◽  
M. PFITZNER ◽  
CHR. STEMMER ◽  
B. CUENOT ◽  
...  

The interaction between turbulence in a minimal supersonic channel and radiative heat transfer is studied using large-eddy simulation. The working fluid is pure water vapour with temperature-dependent specific heats and molecular transport coefficients. Its line spectra properties are represented with a statistical narrow-band correlated-k model. A grey gas model is also tested. The parallel no-slip channel walls are treated as black surfaces concerning thermal radiation and are kept at a constant temperature of 1000 K. Simulations have been performed for different optical thicknesses (based on the Planck mean absorption coefficient) and different Mach numbers. Results for the mean flow variables, Reynolds stresses and certain terms of their transport equations indicate that thermal radiation effects counteract compressibility (Mach number) effects. An analysis of the total energy balance reveals the importance of radiative heat transfer, compared to the turbulent and mean molecular heat transport.


2018 ◽  
Vol 30 (2) ◽  
pp. 023104 ◽  
Author(s):  
M. Usman ◽  
T. Zubair ◽  
M. Hamid ◽  
Rizwan Ul Haq ◽  
Wei Wang

2018 ◽  
Vol 387 ◽  
pp. 332-342
Author(s):  
R. Suresh Babu ◽  
B. Rushi Kumar ◽  
Oluwole Daniel Makinde

This article investigates the magnetohydrodynamic mixed convective heat, and mass transfer flow of an incompressible, viscous, Boussinesq, electrically conducting fluid from a vertical plate in a sparsely packed porous medium in the presence of thermal radiation and an nth order homogeneous chemical reaction between the fluid and the diffusing species numerically. In this investigation, the fluid and porous properties like thermal and solutal diffusivity, permeability and porosity are all considered to be vary. The governing non-linear PDE's for the fluid flow are derived and transformed into a system of ODE's using an appropriate similarity transformation. The resultant equations are solved numerically using shooting technique and Runge-Kutta integral scheme with the help of Newton-Raphson algorithm in order to know the characteristics of the fluid for various non-dimensional parameters which are controlling the physical system graphically. The results of the numerical scheme are validated and a numerical comparison has been made with the available literature in the absence of some parameters and found that in good agreement. Nomenclature


Sign in / Sign up

Export Citation Format

Share Document