scholarly journals UV measurements at Marambio and Ushuaia during 2000–2010

2018 ◽  
Vol 18 (21) ◽  
pp. 16019-16031 ◽  
Author(s):  
Kaisa Lakkala ◽  
Alberto Redondas ◽  
Outi Meinander ◽  
Laura Thölix ◽  
Britta Hamari ◽  
...  

Abstract. Solar ultraviolet (UV) irradiances were measured with NILU-UV multichannel radiometers at Ushuaia (54∘ S) and Marambio (64∘ S) between 2000 and 2013. The measurements were part of the Antarctic NILU-UV network, which was started in cooperation between Spain, Argentina and Finland. The erythemally weighted UV irradiance time series of both stations were analysed for the first time. The quality assurance procedures included a travelling reference instrument to transfer the irradiance scale to the stations. The time series were homogenized and high quality measurements were available for the period 2000–2010. During this period UV indices of 11 or more were measured on 5 and 35 days at Marambio and Ushuaia, respectively. At Marambio, the peak daily maximum UV index of 12 and daily doses of around 7 kJ m−2 were measured in November 2007. The highest UV daily doses at both stations were typically around 6 kJ m−2 and occurred when the stations were inside the polar vortex, resulting in very low total ozone amount. At both stations, daily doses in late November could even exceed those in the summer. At Marambio, in some years, also daily doses in October can be as high as those during the summer. At Ushuaia, the peak daily maximum UV index of 13 was measured twice: in November 2003 and 2009. Also during those days, the station of Ushuaia was inside the polar vortex.

2018 ◽  
Author(s):  
Kaisa Lakkala ◽  
Alberto Redondas ◽  
Outi Meinander ◽  
Laura Thölix ◽  
Britta Hamari ◽  
...  

Abstract. Solar ultraviolet (UV) irradiances were measured with NILU-UV multichannel radiometers at Ushuaia (54° S) and Marambio (64° S) between 2000 and 2013. The measurements were part of the Antarctic NILU-UV network, which was started in cooperation between Spain, Argentina and Finland. The erythemally weighted UV irradiance time series of both stations were analyzed for the first time in this study. The quality assurance procedures included a traveling refence instrument to transfer the irradiance scale to the stations. The time series were homogenized and high quality measurements were available for the period 2000–2010. During this period UV indices of 11 or more were measured on 5 and 35 days at Marambio and Ushuaia, correspondingly. At Marambio, the peak daily maximum UV index of 12 and dailydoses of around 7 kJ/m2 were measured in November 2007. Typically the highest UV daily doses were at both stations around 6 kJ/m2, and they occurred on time periods, when the station was inside the polar vortex with very low total ozone amount. At both stations, dailydoses of late November could even exceed those of summer. At Marambio, in some years, also dailydoses in October can be as high as those during the summer. At Ushuaia, the peak daily maximum UV index of 13 was measured twice: in November 2003 and 2009. Also during those days, the station of Ushuaia was inside the polar vortex.


2019 ◽  
Author(s):  
Kaisa Lakkala ◽  
Margit Aun ◽  
Ricardo Sanchez ◽  
Germar Bernhard ◽  
Eija Asmi ◽  
...  

Abstract. A GUV multifilter radiometer was set up at Marambio, 64° S 56° W, Antarctica, in 2017. The instrument measures continuously ultraviolet (UV) radiation, visible (VIS) radiation and photosynthetically active radiation (PAR). The measurements are designed for providing high quality long-term time series which can be used to assess the impact of global climate change in the Antarctic region. The quality assurance includes regular absolute calibrations and solar comparisons performed at the site and at Sodankylä, Finland. The actual measurements continue the time series measured at Marambio with NILU-UV radiometers during 2000–2010 as part of the Antarctic NILU-UV network. They are optimal for assessing the effects of the ongoing stratospheric ozone recovery on the ecosystem as the data products include information on radiation at various wavelengths ranging from UV to VIS so that changes on biologically effective radiation due to ozone can be separated from those due to other factors. The final data products are total ozone, PAR, VIS radiation at 555 nm, UV index, UV irradiance at 5 channels, UVB and UVA dose rate/daily dose, and biologically weighted UV dose rate/ daily dose, including 10 different action spectra. The data from the last five days and the daily maximum UV index time series are plotted and updated daily on the web page fmiarc.fmi.fi/sub_sites/GUVant/. The first two years of UV measurements were very different in terms of the results: The monthly average of daily maximum UVB dose rates were clearly higher in 2018 than in 2017 during the period from October to December. The largest difference was observed in October, when the average of daily maximum UVB dose rates was 7.6 kWm−2 and 10.2 kWm−2 in 2017 and 2018, respectively. The monthly averages were close to each other for all the three months in 2018, while in 2017 the monthly average of October was lower than those of November and December. VIS and PAR time series show that daily maxima in 2018–2019 exceed those in 2017–2018 during the late spring and the summer (mid-November–January). The studied dataset is freely accessible at https://doi.org/10.5281/zenodo.3553634 (Lakkala et al.,2019).


2020 ◽  
Vol 12 (2) ◽  
pp. 947-960 ◽  
Author(s):  
Kaisa Lakkala ◽  
Margit Aun ◽  
Ricardo Sanchez ◽  
Germar Bernhard ◽  
Eija Asmi ◽  
...  

Abstract. A ground-based ultraviolet (GUV) multi-filter radiometer was set up at Marambio, 64∘ S, 56∘ W, Antarctica, in 2017. The instrument continuously measures ultraviolet (UV) radiation, visible (VIS) radiation and photosynthetically active radiation (PAR). The measurements are designed for providing high-quality long-term time series that can be used to assess the impact of global climate change in the Antarctic region. The quality assurance includes regular absolute calibrations and solar comparisons performed at Marambio and at Sodankylä, Finland. The measurements continue observations at Marambio that were performed with (Norwegian Institute for Air Re-search UV Radiometer (NILU-UV) radiometers between 2000 and 2010 as part of the Antarctic NILU-UV network. These measurements are ideally suited for assessing the effects of the ongoing stratospheric ozone recovery on the ecosystem, as the data products include information on radiation at various wavelengths ranging from UV to VIS so that changes on biologically effective radiation due to ozone can be separated from those due to other factors. Data products include total ozone, photosynthetically active radiation (PAR), visible (VIS) radiation at 555 nm, UV index, UV irradiance at 5 channels, UVB and UVA dose rate and daily dose, and biologically weighted UV dose rate and daily dose, calculated with 10 different action spectra. The data from the last 5 d and the daily maximum UV index time series are plotted and updated daily on the following web page: http://fmiarc.fmi.fi/sub_sites/GUVant/ (last access: 17 April 2020). The first 2 years of UV measurements were very different in terms of the results: for October, November and December the monthly average of daily maximum UVB dose rates were clearly higher in 2018 than in 2017. The largest difference was observed in October, when the average of daily maximum UVB dose rates was 76 and 102 µW cm−2 in 2017 and 2018, respectively. Monthly averages of the 3 months were similar in 2018, while in 2017 the monthly average of October was lower than those of November and December. The VIS and PAR time series show that daily maxima in 2018–2019 exceed those in 2017–2018 during late spring and summer (mid-November–January). The studied dataset, including daily maximum irradiances at five UV channels and one VIS channel; daily maximum UVB, UVA, and PAR dose rates; noon UVB, UVA, and PAR dose rates; noon total column ozone; and UVB and UVA daily doses, is freely accessible at https://doi.org/10.5281/zenodo.3688700 (Lakkala et al., 2019).


2012 ◽  
Vol 30 (10) ◽  
pp. 1435-1449 ◽  
Author(s):  
E. A. Wolfram ◽  
J. Salvador ◽  
F. Orte ◽  
R. D'Elia ◽  
S. Godin-Beekmann ◽  
...  

Abstract. Record-low ozone column densities (with a minimum of 212 DU) persisted over three weeks at the Río Gallegos NDACC (Network for the Detection of Atmospheric Composition Change) station (51.5° S, 69.3° W) in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR) database for Río Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Río Gallegos, and observations from satellite and ground-based instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25%. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI) were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level (~22 km). The position of Río Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Río Gallegos between 18 and 24 km in the first two weeks of December 2009.


2011 ◽  
Vol 4 (3) ◽  
pp. 2789-2826 ◽  
Author(s):  
H. Diémoz ◽  
A. M. Siani ◽  
G. R. Casale ◽  
A. di Sarra ◽  
B. Serpillo ◽  
...  

Abstract. A blind intercomparison of ground-based ultraviolet (UV) instruments has been organized for the first time in Italy. The campaign was coordinated by the Environmental Protection Agency of Aosta Valley (ARPA Valle d'Aosta) and took place in Saint-Christophe (45.8° N, 7.4° E, 570 m a.s.l.), in the Alpine region, from 8 to 23 June 2010. It involved 8 institutions, 10 broadband radiometers, 2 filter radiometers and 2 spectroradiometers. Synchronized measurements of downward global solar UV irradiance at the ground were collected and the raw series were then individually processed by the respective operators on the basis of their own procedures and calibration data. The comparison was performed in terms of global solar UV Index and integrated UV-A irradiance against a well-calibrated double monochromator spectroradiometer as reference. An improved algorithm for comparing broadband data and spectra has been developed. For some instruments, we found average deviations ranging from −16 % up to 20 % relative to the reference and diurnal variations as large as 15 % even in clear days. Remarkable deviations also arose from instruments recently in operation and never involved in field intercomparison.


2021 ◽  
Vol 21 (2) ◽  
pp. 617-633
Author(s):  
Martin Dameris ◽  
Diego G. Loyola ◽  
Matthias Nützel ◽  
Melanie Coldewey-Egbers ◽  
Christophe Lerot ◽  
...  

Abstract. Ozone data derived from the Tropospheric Monitoring Instrument (TROPOMI) sensor on board the Sentinel-5 Precursor satellite show exceptionally low total ozone columns in the polar region of the Northern Hemisphere (Arctic) in spring 2020. Minimum total ozone column values around or below 220 Dobson units (DU) were seen over the Arctic for 5 weeks in March and early April 2020. Usually the persistence of such low total ozone column values in spring is only observed in the polar Southern Hemisphere (Antarctic) and not over the Arctic. These record low total ozone columns were caused by a particularly strong polar vortex in the stratosphere with a persistent cold stratosphere at higher latitudes, a prerequisite for ozone depletion through heterogeneous chemistry. Based on the ERA5, which is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis, the Northern Hemisphere winter 2019/2020 (from December to March) showed minimum polar cap temperatures consistently below 195 K around 20 km altitude, which enabled enhanced formation of polar stratospheric clouds. The special situation in spring 2020 is compared and discussed in context with two other Northern Hemisphere spring seasons, namely those in 1997 and 2011, which also displayed relatively low total ozone column values. However, during these years, total ozone columns below 220 DU over several consecutive days were not observed in spring. The similarities and differences of the atmospheric conditions of these three events and possible explanations for the observed features are presented and discussed. It becomes apparent that the monthly mean of the minimum total ozone column value for March 2020 (221 DU) was clearly below the respective values found in March 1997 (267 DU) and 2011 (252 DU), which highlights the special evolution of the polar stratospheric ozone layer in the Northern Hemisphere in spring 2020. A comparison with a typical ozone hole over the Antarctic (e.g., in 2016) indicates that although the Arctic spring 2020 situation is remarkable, with total ozone column values around or below 220 DU observed over a considerable area (up to 0.9 million km2), the Antarctic ozone hole shows total ozone columns typically below 150 DU over a much larger area (of the order of 20 million km2). Furthermore, total ozone columns below 220 DU are typically observed over the Antarctic for about 4 months.


2018 ◽  
Vol 14 (1) ◽  
pp. 200-205
Author(s):  
Niranjan Prasad Sharma

The main objective of this research is to study the satellite estimated solar Ultraviolet data alongside the ground based data in Nepal. Kathmandu (27.72°N, 85.32°>E), Pokhara (28.22°N, 83.32°E) Biratnagar (26.45°N, 87.27°E) and Lukla (27.69°N, 86.73°E) are located at an elevation of 1350m, 800m, 72m and 2850m respectively from the sea level. The ground based measurements and the satellite estimation were performed by NILU-UV irradiance meter and EOS Aura OMI satellite respectively. The NILU-UV irradiance meter is a six channel radiometer designed to measure hemispherical irradiances on a flat surface. Meanwhile the Ozone Monitoring Instrument (OMI) on board, the NASA EOS Aura space craft is a nadir viewing spectrometer that measures solar reflected and back scattered light in ultraviolet and visible spectrum. The study was performed for 3 years Ultraviolet Radiation (UVR) data. This study showed that the ratio of predicted OMI Ultraviolet Index (UVI) to that determined from the ground based measurement was less than 1.21 except in Lukla.Journal of the Institute of Engineering, 2018, 14(1): 200-205


2015 ◽  
Vol 8 (5) ◽  
pp. 4537-4580 ◽  
Author(s):  
J. Kujanpää ◽  
N. Kalakoski

Abstract. The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. The input total ozone product is generated by the German Aerospace Center (DLR) also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT) and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit (daytime ascending node around 14:30 LT). In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast) using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5° × 0.5° regular latitude–longitude grid and stored as daily files in the hierarchical data format (HDF5) within two weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.


Environments ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Ilias Fountoulakis ◽  
Henri Diémoz ◽  
Anna-Maria Siani ◽  
Gudrun Laschewski ◽  
Gianluca Filippa ◽  
...  

Review of the existing bibliography shows that the direction and magnitude of the long-term trends of UV irradiance, and their main drivers, vary significantly throughout Europe. Analysis of total ozone and spectral UV data recorded at four European stations during 1996–2017 reveals that long-term changes in UV are mainly driven by changes in aerosols, cloudiness, and surface albedo, while changes in total ozone play a less significant role. The variability of UV irradiance is large throughout Italy due to the complex topography and large latitudinal extension of the country. Analysis of the spectral UV records of the urban site of Rome, and the alpine site of Aosta reveals that differences between the two sites follow the annual cycle of the differences in cloudiness and surface albedo. Comparisons between the noon UV index measured at the ground at the same stations and the corresponding estimates from the Deutscher Wetterdienst (DWD) forecast model and the ozone monitoring instrument (OMI)/Aura observations reveal differences of up to 6 units between individual measurements, which are likely due to the different spatial resolution of the different datasets, and average differences of 0.5–1 unit, possibly related to the use of climatological surface albedo and aerosol optical properties in the retrieval algorithms.


2011 ◽  
Vol 11 (2) ◽  
pp. 6555-6599 ◽  
Author(s):  
T. Sonkaew ◽  
C. von Savigny ◽  
K.-U. Eichmann ◽  
M. Weber ◽  
A. Rozanov ◽  
...  

Abstract. Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone loss in both the Arctic and Antarctic polar vortices using the vortex average method. The chemical ozone loss at isentropic levels between 450 K and 600 K is derived from the difference between observed ozone abundances and the ozone modelled considering diabatic cooling, but no chemical ozone loss. The results show chemical ozone losses of up to 20–40% between the beginning of January and the end of March inside the Arctic polar vortex. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing the largest chemical ozone losses. The ozone mass loss inside the polar vortex is also estimated. In the coldest Arctic winter 2004/2005 the total ozone mass loss is about 30 million tons inside the polar vortex between the 450 K and 600 K isentropic levels from the beginning of January until the end of March. The Antarctic vortex averaged ozone loss as well as the size of the polar vortex do not vary much from year to year. At the 475 K isentropic level ozone losses of 70–80% between mid-August and mid-November are observed every year inside the vortex, also in the anomalous year 2002. The total ozone mass loss inside the Antarctic polar vortex between the 450 K and 600 K isentropic levels is about 55–75 million tons for the period between mid-August and mid-November. Comparisons of the vertical variation of ozone loss derived from SCIAMACHY observations with several independent techniques for the Arctic winter 2004/2005 show very good agreement.


Sign in / Sign up

Export Citation Format

Share Document