scholarly journals Surveillance of SO<sub>2</sub> and NO<sub>2</sub> from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance

2019 ◽  
Vol 19 (21) ◽  
pp. 13611-13626 ◽  
Author(s):  
Yuli Cheng ◽  
Shanshan Wang ◽  
Jian Zhu ◽  
Yanlin Guo ◽  
Ruifeng Zhang ◽  
...  

Abstract. Due to increased concerns regarding air pollutants emitted from shipping, feasible technology for the surveillance of these pollutants is in high demand. Here, we present shore-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of SO2 and NO2 emitted from ships under different traffic conditions in China's ship emission control areas (ECAs) in Shanghai and Shenzhen, China. Three typical measurement sites were selected in these two regions to represent the following emission scenarios: ships docked at berth, ships navigating in an inland waterway and inbound/outbound ships in a deep-water port. Using 2-D scanning, the observations show that SO2 and NO2 hot spots can be quickly and easily located from multiple berths. Although MAX-DOAS measurements can not distinguish plumes from specific ships in the busy shipping lanes of the inland waterway area, they certify that variations in the SO2 and NO2 levels are mainly impacted by the ship traffic density and the atmospheric dispersion conditions. In the open water area, which has a lower vessel density, MAX-DOAS measurements can capture the pulse signal of ship-emitted SO2 and NO2 very well; they can also characterize the peak's altitude and the insistent duration of the individual ship plumes. Combined with the ship activity data, information on the rated power of the engine and the fuel sulfur content, it was found that the SO2∕NO2 ratio in a single plume is usually low (< 1.5) for inbound vessels due to the usage of the auxiliary engine, which has less power and uses “clean” fuel with a low sulfur content. Thus, an unexpectedly high SO2∕NO2 ratio implies the use of fuel with a sulfur content exceeding the regulation limits. Therefore, the observed SO2∕NO2 ratio in the plume of a single ship can be used as an index to indicate compliance (or noncompliance) with respect to the fuel sulfur content, and the suspicious ship can then be flagged for further enforcement. Combining the ship emissions estimated by actual operation parameters and the logical sulfur content, shore-based MAX-DOAS measurements will provide a fast and more accurate way to surveil ship emissions.

2019 ◽  
Author(s):  
Yuli Cheng ◽  
Shanshan Wang ◽  
Jian Zhu ◽  
Yanlin Guo ◽  
Ruifeng Zhang ◽  
...  

Abstract. With the increased concerns on the shipping emitted air pollutants, the feasible technology for the surveillance is in high demand. Here we presented the shore-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of emitted SO2 and NO2 from ships under different traffic conditions in China's ship emission control area (ECA) of Shanghai and Shenzhen, China. These three typical measurement sites are used to represent emission scenarios of ship docked at berth, navigation in the inland waterway and inbound/outbound in the deep water port. With 2-dimensional scanning, the observation shows that the hotspots of SO2 and NO2 can be quickly and easily located from multiple berth. Although the MAX-DOAS measurements can not distinguish the single ship plume in the busy shipping lanes of inland waterway area, it certificates that the variations of SO2 and NO2 levels are mainly impacted by the ship traffic density and atmospheric dispersion conditions. In the open water area with low density of vessels, the MAX-DOAS measurements can capture the pulse signal of ship emitted SO2 and NO2 very well, and characterize the peaks altitude and insistent duration of the individual ship plumes. Combined with the ship information of activity data, rated power of engine and fuel sulfur content, it was found that SO2 / NO2 ratio in single plume is usually low (


2020 ◽  
Author(s):  
Stefan Schmitt ◽  
Denis Pöhler ◽  
Andreas Weigelt ◽  
Folkard Wittrock ◽  
André Seyler ◽  
...  

&lt;p&gt;In contrast to land-based sources of air pollution, which have been regulated and reduced since several decades, NO&lt;sub&gt;x&lt;/sub&gt; and SO&lt;sub&gt;x&lt;/sub&gt; emissions from ships were only recently identified as significant sources of air pollution. As one consequence the sulphur content of ship fuel used within the so-called Sulphur Emission Control Areas (SECA) was recently regulated to a maximum of 0.1% (m/m) (MARPOL Annex VI). Therefore, especially monitoring the emission of sulphur compounds is of particular interest.&lt;/p&gt;&lt;p&gt;Within a 6-week measurement campaign in July and August of 2016, ship emissions were measured at the river Elbe in Germany, near Hamburg using the Long Path (LP)-DOAS technique. The measurements were carried out within the framework of the project MeSMarT (MEasurements of Shipping emissions in the MARine Troposphere), which investigates the influence of ship emissions on chemical processes in the atmosphere. Currently, monitoring of ship emission plumes is typically achieved by a combination of in situ trace gas monitors and meteorological sensors. In contrast to that the LP-DOAS technique is capable of simultaneously measuring signatures of multiple trace gases along an absorption path across a well-frequented waterway close to the ship exhaust-pipes and thus directly in the emission plume at a time resolution of a few seconds.&lt;/p&gt;&lt;p&gt;For our study, a LP-DOAS instrument was set up side by side to an in situ MeSMarT measurement station at the river Elbe at Wedel (15 km downriver of Hamburg harbour) where NO&lt;sub&gt;2&lt;/sub&gt; and SO&lt;sub&gt;2&lt;/sub&gt; emission signatures of a total of 5037 ship passes (of 1044 individual ships) were monitored. While the in situ method detected 16% of the ships, the LP-DOAS was able to assign emission plumes to 41% of all passing ships. With meteorology mainly limiting the in situ detection yield, the major limitation for the LP-DOAS was found to be due to the high traffic density and thus the difficulty to unambiguously assign recorded plumes to particular vessels, rather than to the sensitivity to the emission plume itself.&lt;/p&gt;&lt;p&gt;Based on the results of this feasibility study, we present a newly designed LP-DOAS system fulfilling the requirements for operational ship emission monitoring (robust mechanical setup, broad-band long-lifetime light source, compact sealed housing, automized alignment and data acquisition). This new system is now operated continuously to measure the ship emissions on the river Elbe.&lt;/p&gt;


2019 ◽  
Vol 12 (11) ◽  
pp. 6113-6124 ◽  
Author(s):  
Fan Zhou ◽  
Shengda Pan ◽  
Wei Chen ◽  
Xunpeng Ni ◽  
Bowen An

Abstract. Air pollution from ship exhaust gas can be reduced by the establishment of emission control areas (ECAs). Efficient supervision of ship emissions is currently a major concern of maritime authorities. In this study, a measurement system for exhaust gas from ships based on an unmanned aerial vehicle (UAV) was designed and developed. Sensors were mounted on the UAV to measure the concentrations of SO2 and CO2 in order to calculate the fuel sulfur content (FSC) of ships. The Waigaoqiao port in the Yangtze River Delta, an ECA in China, was selected for monitoring compliance with FSC regulations. Unlike in situ or airborne measurements, the proposed measurement system could be used to determine the smoke plume at about 5 m from the funnel mouth of ships, thus providing a means for estimating the FSC of ships. In order to verify the accuracy of these measurements, fuel samples were collected at the same time and sent to the laboratory for chemical examination, and these two types of measurements were compared. After 23 comparative experiments, the results showed that, in general, the deviation of the estimated value for FSC was less than 0.03 % (m/m) at an FSC level ranging from 0.035 % (m/m) to 0.24 % (m/m). Hence, UAV measurements can be used for monitoring of ECAs for compliance with FSC regulations.


2019 ◽  
Vol 19 (7) ◽  
pp. 4899-4916 ◽  
Author(s):  
Yanni Zhang ◽  
Fanyuan Deng ◽  
Hanyang Man ◽  
Mingliang Fu ◽  
Zhaofeng Lv ◽  
...  

Abstract. Since 1 January 2017, ships berthed at the core ports of three designated “domestic emission control areas” (DECAs) in China should be using fuel with a sulfur content less than or equal to 0.5 %. In order to evaluate the impacts of fuel switching, a measurement campaign (SEISO-Bohai) was conducted from 28 December 2016 to 15 January 2017 at Jingtang Harbor, an area within the seventh busiest port in the world. This campaign included meteorological monitoring, pollutant monitoring, aerosol sampling and fuel sampling. During the campaign, 16 ship plumes were captured by the on-shore measurement site, and 4 plumes indicated the usage of high-SF (SF refers to the sulfur content of marine fuels). The average reduction of the mean ΔNOx∕ΔSO2 ratio from high-sulfur plumes (3.26) before 1 January to low-sulfur plumes (12.97) after 1 January shows a direct SO2 emission reduction of 75 %, consistent with the sulfur content reduction (79 %). The average concentrations of PM2.5 (particulate matter with a diameter less than 2.5 µm), NOx, SO2, O3 and CO during campaign were 147.85 µg m−3, 146.93, 21.91, 29.68 ppb and 2.21 ppm, respectively, among which NOx reached a maximum hourly concentration of 692.6 ppb, and SO2 reached a maximum hourly concentration of 165.5 ppb. The mean concentrations of carbonaceous and dominant ionic species in particles were 6.52 (EC – elemental carbon), 23.10 (OC – organic carbon), 22.04 (SO42-), 25.95 (NO3-) and 13.55 (NH4+) µg m−3. Although the carbonaceous species in particles were not significantly affected by fuel switching, the gas and particle pollutants in the ambient air exhibited clear and effective improvements due to the implementation of low-sulfur fuel. Comparison with the prevailing atmospheric conditions and a wind map of SO2 variation concluded a prompt SO2 reduction of 70 % in ambient air after fuel switching. Given the high humidity at the study site, this SO2 reduction will abate the concentration of secondary aerosols and improve the acidity of particulate matter. Based on the enrichment factors of elements in PM2.5, vanadium was identified as a marker of residual fuel ship emissions, decreasing significantly by 97.1 % from 309.9 ng m−3 before fuel switching to 9.1 ng m−3 after regulation, which indicated a crucial improvement due to the implementation of low-sulfur fuels. Ship emissions were proven to be significantly influential both directly and indirectly on the port environment and the coastal areas around Bohai Bay, where the population density reaches over 650 people per square kilometer. The results from this study report the positive impact of fuel switching on the air quality in the study region and indicate a new method for identifying the ship fuel type used by vessels in the area.


2013 ◽  
Vol 25 (4) ◽  
pp. 536-544 ◽  
Author(s):  
Jean-Baptiste Thiebot ◽  
Amélie Lescroël ◽  
Christophe Barbraud ◽  
Charles-André Bost

AbstractThe juvenile phase is poorly known in Antarctic seabirds, despite being a critical period for individual survival. To better understand the ecology of young Antarctic seabirds, we surveyed for the first time the three-dimensional habitat use of six juvenile emperor penguins during their post-natal dispersal from Terre Adélie, using bio-telemetric tags. The tags transmitted location and activity data for nearly 100 days on average. One individual was followed during eight months and covered 7000 km, which represents the longest continuous individual survey for the species. Studied individuals first dispersed away from Antarctica, up to 54.7°S and 1250 km north of the pack-ice edge, in the Polar Frontal Zone. This highlighted a much looser association with sea ice and a greater at-sea range compared to previous knowledge on breeding adults. Juvenile penguins then moved southwards close to the extending pack-ice during autumn and winter. Over the survey duration, juveniles showed a contrasting use of marine habitats, with less mobility, less time underwater, and shallower dives (generally not over 50–100 m) in the pack ice, versus greater distances travelled, more time spent underwater, especially deeper than 100 m (up to 250–300 m) in open water. We discuss hypotheses which could explain the northward exodus of juvenile emperor penguins across contrasting habitats.


2017 ◽  
Vol 17 (18) ◽  
pp. 10997-11023 ◽  
Author(s):  
André Seyler ◽  
Folkard Wittrock ◽  
Lisa Kattner ◽  
Barbara Mathieu-Üffing ◽  
Enno Peters ◽  
...  

Abstract. A 3-year time series of ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of NO2 and SO2 on the island Neuwerk has been analyzed for contributions from shipping emissions. The island is located in the German Bight, close to the main shipping lane (at a distance of 6–7 km) into the river Elbe towards the harbor of Hamburg. Measurements of individual ship plumes as well as of background pollution are possible from this location. A simple approach using the column amounts of the oxygen molecule dimer or collision complex, O4, for the determination of the horizontal light path length has been applied to retrieve path-averaged volume mixing ratios. An excellent agreement between mixing ratios determined from NO2 retrievals in the UV and visible parts of the spectrum has been found, showing the validity of the approach. Obtained mixing ratios of NO2 and SO2 are compared to co-located in situ measurements showing good correlation on average but also a systematic underestimation by the MAX-DOAS O4 scaling approach. Comparing data before and after the introduction of stricter fuel sulfur content limits (from 1 to 0.1 %) on 1 January 2015 in the North Sea Emission Control Area (ECA), a significant reduction in SO2 levels is observed. For situations with wind from the open North Sea, where ships are the only local source of air pollution, the average mixing ratio of SO2 decreased by a factor of 8, while for NO2 in the whole time series from 2013 to 2016, no significant change in emissions was observed. More than 2000 individual ship emission plumes have been identified in the data and analyzed for the emission ratio of SO2 to NO2, yielding an average ratio of 0.3 for the years 2013/2014 and decreasing significantly, presumably due to lower fuel sulfur content, in 2015/2016. By sorting measurements according to the prevailing wind direction and selecting two angular reference sectors representative for wind from the open North Sea and coast excluding data with mixed air mass origin, relative contributions of ships and land-based sources to air pollution levels in the German Bight have been estimated to be around 40 % : 60 % for NO2 as well as SO2 in 2013/2014, dropping to 14 % : 86 % for SO2 in 2015/2016.


2020 ◽  
Author(s):  
Fan Zhou ◽  
Liwei Hou ◽  
Rui Zhong ◽  
Wei Chen ◽  
Xunpeng Ni ◽  
...  

Abstract. Due to technical and cost limitations, the monitoring of emissions from ships sailing in open water within the ship emission control areas (ECAs) is relatively rare. The present study adopts a monitoring method that uses an unmanned aerial vehicle (UAV) that takes off from a patrol boat to measure the sulfur dioxide and carbon dioxide emissions from sailing ships. Our method aims to provide a low-cost, remote approach for estimating the fuel sulfur content (FSC) of sailing ships in open water, which overcomes the limitations of ground-based and small aircraft methods. The selected monitoring area was the Yangtze River estuary, a domestic ECA with an FSC limit of 0.5 % (m/m) implemented by the Chinese government. A total of 27 sailing ships were monitored, 14 of which were found to have an FSC of > 0.5 % (m/m). Moreover, the FSCs of the sailing ships were found to be higher than those of berthing ships in the study area. According to the monitoring results, four of the monitored ships were intercepted by the maritime law enforcement, and fuel samples were collected and analyzed in a laboratory; the results confirmed that all four FSCs were > 0.5 % (m/m). Among them, one offending ship was tracked down on July 15, 2019, which was the first time that a sailing ship had been caught for having failed the FSC regulations in China. Overall, the present study provides scientific support for evaluating the effectiveness of ECA policies, and recommends that emissions from sailing ships should be monitored more often in the open water in the future.


2013 ◽  
Vol 13 (4) ◽  
pp. 1941-1955 ◽  
Author(s):  
S. B. Dalsøren ◽  
B. H. Samset ◽  
G. Myhre ◽  
J. J. Corbett ◽  
R. Minjares ◽  
...  

Abstract. We quantify the concentrations changes and Radiative Forcing (RF) of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004–2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH) scenario and a low scenario with Maximum Feasible Reduction (MFR) of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH) and 73 mW m−2 (MFR) are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August–October). RF due to BC in air, and snow and ice becomes significant during Arctic spring. For the HIGH scenario the net Arctic RF during spring is 5 times higher than in winter.


2019 ◽  
Author(s):  
Ingrid Super ◽  
Hugo A. C. Denier van der Gon ◽  
Michiel K. van der Molen ◽  
Stijn N. C. Dellaert ◽  
Wouter Peters

Abstract. We present a modelling framework for fossil fuel CO2 emissions in an urban environment, which allows constraints from emission inventories to be combined with atmospheric observations of CO2 and its co-emitted species CO, NOx, and SO2. Rather than a static assignment of average emission rates to each unit-area of the urban domain, the fossil fuel emissions we use are dynamic: they vary in time and space in relation to data that describe or approximate the activity within a sector, such as traffic density, power demand, 2 m temperature (as proxy for heating demand), and sunlight and wind speed (as proxies for renewable energy supply). Through inverse modelling, we optimize the relationships between these activity data and the resulting emissions of all species within the dynamic fossil fuel emission model, based on atmospheric mole fraction observations. The advantage of this novel approach is that the optimized parameters (emission factors and emission ratios, N = 44) in this dynamic model (a) vary much less over space and time, (b) allow a physical interpretation of mean and uncertainty, and (c) have better defined uncertainties and covariance structure. This makes them more suited to extrapolate, optimize, and interpret than the gridded emissions themselves. The merits of this approach are investigated using a pseudo-observation-based ensemble Kalman filter inversion setup for the Dutch Rijnmond area at 1 × 1 km resolution. We find that the dynamic fossil fuel model approximates the gridded emissions well (annual mean differences


Sign in / Sign up

Export Citation Format

Share Document