scholarly journals The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015

2020 ◽  
Vol 20 (20) ◽  
pp. 12063-12091
Author(s):  
Guillaume Monteil ◽  
Grégoire Broquet ◽  
Marko Scholze ◽  
Matthew Lang ◽  
Ute Karstens ◽  
...  

Abstract. Atmospheric inversions have been used for the past two decades to derive large-scale constraints on the sources and sinks of CO2 into the atmosphere. The development of dense in situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM (European atmospheric transport inversion comparison) project is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006–2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale. The project participants were provided with a common database of in situ-observed CO2 concentrations (including the observation sites that are now part of the ICOS network) and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach, and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties. This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (-0.21±0.2 Pg C yr−1). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for sub-regions within Europe, and in these areas with dense observational coverage, the objective of delivering robust country-scale flux estimates appears achievable in the near future.

2019 ◽  
Author(s):  
Guillaume Monteil ◽  
Grégoire Broquet ◽  
Marko Scholze ◽  
Matthew Lang ◽  
Ute Karstens ◽  
...  

Abstract. Atmospheric inversions have been used for the past two decades to derive large scale constraints on the sources and sinks of CO2 into the atmosphere. The development of high density in-situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM project (EUROpean atmospheric transport inversion COMparison) is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006–2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale. The project participants were provided with a common database of in-situ observed CO2 concentrations (including the observation sites that are now part of the ICOS network), and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties. This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (−0.21 ± 0.2 PgC/year). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for sub-regions within Europe, and in these areas with dense observational coverage, the objective of delivering robust country scale flux estimates appears achievable in the near future.


2014 ◽  
Vol 14 (16) ◽  
pp. 22587-22638 ◽  
Author(s):  
Q. Zhu ◽  
Q. Zhuang ◽  
D. Henze ◽  
K. Bowman ◽  
M. Chen ◽  
...  

Abstract. Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is −2.47 Pg C yr−1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (−2.82 Pg C yr−1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining the two modeling approaches and assimilating data of surface carbon flux as well as atmospheric CO2 mixing ratios might significantly improve the quantification of terrestrial carbon fluxes.


2019 ◽  
Author(s):  
Antoine Berchet ◽  
Isabelle Pison ◽  
Patrick M. Crill ◽  
Brett Thornton ◽  
Philippe Bousquet ◽  
...  

Abstract. Due to the large variety and heterogeneity of sources in remote areas hard to document, the Arctic regional methane budget remain very uncertain. In situ campaigns provide valuable data sets to reduce these uncertainties. Here we analyse data from the SWERUS-C3 campaign, on-board the icebreaker Oden, that took place during summer 2014 in the Arctic Ocean along the Northern Siberian and Alaskan shores. Total concentrations of methane, as well as isotopic ratios were measured continuously during this campaign for 35 days in July and August 2014. Using a chemistry-transport model, we link observed concentrations and isotopic ratios to regional emissions and hemispheric transport structures. A simple inversion system helped constraining source signatures from wetlands in Siberia and Alaska and oceanic sources, as well as the isotopic composition of lower stratosphere air masses. The variation in the signature of low stratosphere air masses, due to strongly fractionating chemical reactions in the stratosphere, was suggested to explain a large share of the observed variability in isotopic ratios. These points at required efforts to better simulate large scale transport and chemistry patterns to use isotopic data in remote areas. It is found that constant and homogeneous source signatures for each type of emission in the region (mostly wetlands and oil and gas industry) is not compatible with the strong synoptic isotopic signal observed in the Arctic. A regional gradient in source signatures is highlighted between Siberian and Alaskan wetlands, the later ones having a lighter signatures than the first ones. Arctic continental shelf sources are suggested to be a mixture of methane from a dominant thermogenic origin and a secondary biogenic one, consistent with previous in-situ isotopic analysis of seepage along the Siberian shores.


2014 ◽  
Vol 14 (17) ◽  
pp. 9249-9258 ◽  
Author(s):  
S. O'Doherty ◽  
M. Rigby ◽  
J. Mühle ◽  
D. J. Ivy ◽  
B. R. Miller ◽  
...  

Abstract. High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant hydrofluorocarbons (HFCs) respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 ± 0.04 and 0.7 ± 0.02 mW m−2 in 2012 respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1σ) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr−1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr−1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr−1 of HFC-143a and 21 ± 11 Gg yr−1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing by 7 ± 5% yr−1 for HFC-143a and 14 ± 11% yr−1 for HFC-32.


2020 ◽  
Author(s):  
Sebastian Friedemann ◽  
Bruno Raffin ◽  
Basile Hector ◽  
Jean-Martial Cohard

<p>In situ and in transit computing is an effective way to place postprocessing and preprocessing tasks for large scale simulations on the high performance computing platform. The resulting proximity between the execution of preprocessing, simulation and postprocessing permits to lower I/O by bypassing slow and energy inefficient persistent storages. This permits to scale workflows consisting of heterogeneous components such as simulation, data analysis and visualization, to modern massively parallel high performance platforms. Reordering the workflow components gives a manifold of new advanced data processing possibilities for research. Thus in situ and in transit computing are vital for advances in the domain of geoscientific simulation which relies on the increasing amount of sensor and simulation data available.</p><p>In this talk, different in situ and in transit workflows, especially those that are useful in the field of geoscientific simulation, are discussed. Furthermore our experiences augmenting ParFlow-CLM, a physically based, state-of-the-art, fully coupled water transfer model for the critical zone, with FlowVR, an in situ framework with a strict component paradigm, are presented.<br>This allows shadowed in situ file writing, in situ online steering and in situ visualization.</p><p>In situ frameworks further can be coupled to data assimilation tools.<br>In the on going EoCoE-II we propose to embed data assimilation codes into an in transit computing environment. This is expected to enable ensemble based data assimilation on continental scale hydrological simulations with multiple thousands of ensemble members.</p>


2011 ◽  
Vol 11 (1) ◽  
pp. 1429-1455 ◽  
Author(s):  
S.-M. Salmi ◽  
P. T. Verronen ◽  
L. Thölix ◽  
E. Kyrölä ◽  
L. Backman ◽  
...  

Abstract. We use the 3-D FinROSE chemistry transport model (CTM) and ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations to study the connection between atmospheric dynamics and NOx descent during early 2009 in the northern polar region. We force the model NOx at 80 km poleward of 60° N with ACE-FTS observations and then compare the model results with observations at lower altitudes. Low geomagnetic indices indicate absence of local NOx production in early 2009, which gives a good opportunity to study the effects of atmospheric transport on polar NOx. No in-situ production of NOx by energetic particle precipitation is therefore included. This is the first model study using ECMWF (The European Centre for Medium-Range Weather Forecasts) data up to 80 km and simulating the exceptional winter of 2009 with one of the strongest major sudden stratospheric warmings (SSW). The model results show a strong NOx descent in February–March 2009 from the upper mesosphere to the stratosphere after the major SSW. Both observations and model results suggest an increase of NOx to 150–200 ppb (i.e. by factor of 50) at 65 km due to the descent following the SSW. The model, however, underestimates the amount of NOx around 55 km by 40–60 ppb. The results also show that the chemical loss of NOx was insignificant i.e. NOx was mainly controlled by the dynamics. Both ACE-FTS observations and FinROSE show a decrease of ozone of 20–30% at 30–50 km after mid-February to mid-March. However, these changes are not related to the NOx descent, but are due to activation of the halogen chemistry.


2021 ◽  
Author(s):  
Juan Cuesta ◽  
Lorenzo Costantino ◽  
Matthias Beekmann ◽  
Guillaume Siour ◽  
Laurent Menut ◽  
...  

Abstract. We present a comprehensive study integrating satellite observations of ozone pollution, in situ measurements and chemistry transport model simulations for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020 over Europe. Satellite observations are derived from the IASI+GOME2 multispectral synergism, which provides particularly enhanced sensitivity to near-surface ozone pollution. These observations are first analysed in terms of differences between the average on 1–15 April 2020, when the strictest lockdown restrictions took place, and the same period in 2019. They show clear enhancements of near-surface ozone in Central Europe and Northern Italy, and some other hotspots, which are typically characterized by VOC-limited chemical regimes. An overall reduction of ozone is observed elsewhere, where ozone chemistry is limited by the abundance of NOx. The spatial distribution of positive and negative ozone concentration anomalies observed from space is in relatively good quantitative agreement with surface in situ measurements over the continent (a correlation coefficient of 0.55, a root-mean-squared difference of 11 ppb and the same standard deviation and range of variability). An average bias of ∼8 ppb between the two observational datasets is remarked, which can partly be explained by the fact the satellite approach retrieves partial columns of ozone with a peak sensitivity above the surface (near 2 km of altitude). For assessing the impact of the reduction of anthropogenic emissions during the lockdown, we adjust the satellite and in situ surface observations for withdrawing the influence of meteorological conditions in 2020 and 2019. This adjustment is derived from the chemistry transport model simulations using the meteorological fields of each year and identical emission inventories. This observational estimate of the influence of lockdown emission reduction is consistent for both datasets. They both show lockdown-associated ozone enhancements in hotspots over Central Europe and Northern Italy, with a reduced amplitude with respect to the total changes observed between the two years, and an overall reduction elsewhere over Europe and the ocean. Satellite observations additionally highlight the ozone anomalies in the regions remote from in situ sensors, an enhancement over the Mediterranean likely associated with maritime traffic emissions and a marked large-scale reduction of ozone elsewhere over ocean (particularly over the North Sea), in consistency with previous assessments done with ozonesondes measurements in the free troposphere. These observational assessments are compared with model-only estimations, using the CHIMERE chemistry transport model. For analysing the uncertainty of the model estimates, we perform two sets of simulations with different setups, differing in the emission inventories, their modifications to account for changes in anthropogenic activities during the lockdown and the meteorological fields. Whereas a general qualitative consistency of positive and negative ozone anomalies is remarked between all model and observational estimates, significant changes are seen in their amplitudes. Models underestimate the range of variability of the ozone changes by at least a factor 2 with respect to the two observational data sets, both for enhancements and decreases of ozone, while the large-scale ozone decrease is not simulated. With one of the setups, the model simulates ozone enhancements a factor 3 to 6 smaller than with the other configuration. This is partly linked to the emission inventories of ozone precursors (at least a 30 % difference), but mainly to differences in vertical mixing of atmospheric constituents depending on the choice of the meteorological model.


2006 ◽  
Vol 6 (6) ◽  
pp. 11727-11743 ◽  
Author(s):  
N. A. D. Richards ◽  
Q. Li ◽  
K. W. Bowman ◽  
J. R. Worden ◽  
S. S. Kulawik ◽  
...  

Abstract. We present results from the first assimilation of carbon monoxide (CO) observations from the Tropospheric Emission Spectrometer (TES) into a global three-dimensional (3-D) chemistry and transport model (CTM). A sequential sub-optimal Kalman filter assimilation scheme (Khattatov et al., 2000) was applied to assimilate TES CO profiles during November 2004 into the GEOS-Chem global 3-D CTM. The assimilation results were compared with MOPITT and MOZAIC observations. The assimilation significantly improves model simulation of CO in the middle to upper troposphere, where the MOPITT versus model bias was reduced by up to two-thirds. Assimilation results show higher levels of CO in the southern tropics, consistent with MOPITT observations. We find good agreement between the TES assimilated model estimates of CO and in situ measurements from the MOZAIC program, which shows a negative bias of up to 10 ppbv in middle and upper tropospheric TES CO. The results demonstrate how assimilation can be used for non-coincident validation of TES CO profile retrievals.


2014 ◽  
Vol 14 (5) ◽  
pp. 6471-6500 ◽  
Author(s):  
S. O'Doherty ◽  
M. Rigby ◽  
J. Mühle ◽  
D. J. Ivy ◽  
B. R. Miller ◽  
...  

Abstract. High frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant HFCs respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 and 0.7 mW m2 in 2012, respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1-sigma) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr−1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr−1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr−1 of HFC-143a and 21 ± 11 Gg yr−1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing 7 ± 5% yr−1 for HFC-143a and 14 ± 11% yr−1 for HFC-32.


2014 ◽  
Vol 14 (2) ◽  
pp. 2307-2362 ◽  
Author(s):  
R. L. Thompson ◽  
P. K. Patra ◽  
K. Ishijima ◽  
E. Saikawa ◽  
M. Corazza ◽  
...  

Abstract. We present a comparison of chemistry-transport models (TransCom-N2O) to examine the importance of atmospheric transport and surface fluxes on the variability of N2O mixing ratios in the troposphere. Six different models and two model variants participated in the inter-comparison and simulations were made for the period 2006 to 2009. In addition to N2O, simulations of CFC-12 and SF6 were made by a subset of four of the models to provide information on the models proficiency in stratosphere-troposphere exchange (STE) and meridional transport, respectively. The same prior emissions were used by all models to restrict differences among models to transport and chemistry alone. Four different N2O flux scenarios totalling between 14 and 17 Tg N yr−1 (for 2005) globally were also compared. The modelled N2O mixing ratios were assessed against observations from in-situ stations, discrete air sampling networks, and aircraft. All models adequately captured the large-scale patterns of N2O and the vertical gradient from the troposphere to the stratosphere and most models also adequately captured the N2O tropospheric growth rate. However, all models underestimated the inter-hemispheric N2O gradient by at least 0.33 ppb (equivalent to 1.5 Tg N), which, even after accounting for an overestimate of emissions in the Southern Ocean of circa 1.0 Tg N, points to a likely underestimate of the Northern Hemisphere source by up to 0.5 Tg N and/or an overestimate of STE in the Northern Hemisphere. Comparison with aircraft data reveal that the models overestimate the amplitude of the N2O seasonal cycle at Hawaii (21° N, 158° W) below circa 6000 m, suggesting an overestimate of the importance of stratosphere to troposphere transport in the lower troposphere at this latitude. In the Northern Hemisphere, most of the models that provided CFC-12 simulations captured the phase of the CFC-12, seasonal cycle, indicating a reasonable representation of the timing of STE. However, for N2O all models simulated a too early minimum by 2 to 3 months owing to errors in the seasonal cycle in the prior soil emissions, which is still not adequately represented by terrestrial biosphere models. In the Southern Hemisphere, most models failed to capture the N2O and CFC-12 seasonality at Cape Grim, Tasmania, and all failed at the South Pole, whereas for SF6, all models could capture the seasonality at all sites, suggesting that there are large errors in modeled vertical transport in high southern latitudes.


Sign in / Sign up

Export Citation Format

Share Document