scholarly journals Implementation of the Bessel's method for solar eclipses prediction in the WRF-ARW model

2016 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack ◽  
Y. Sola

Abstract. Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently result in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in adding additional detail to the modeling of solar radiation variations in Numerical Weather Prediction (NWP) models for use in solar resource assessment and forecasting applications. The recent partial and total solar eclipses that occurred in USA (October 23, 2014) and Europe (March 20, 2015), respectively, are showing the necessity for including these astronomical events on the current solar parameterizations, beyond the purely meteorological interest. Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case of study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting – Advanced Research (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm computes analytically the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid-point of the domain based on the Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid-point of the domain. This contribution is divided in two parts. First, we present a description of the implementation of the Bessel's method within the WRF-ARW model together with a validation for the period 1950-2050 of all solar eclipse trajectories with respect to NASA values. Second, we analyze the model response in four total solar eclipse episodes: 1994-11-03 (South America), 1999-08-11 (Europe), 2006-03-29 (North Africa) and 2009-07-22 (Eastern Asia). The second part includes a validation of the simulated global horizontal irradiance (GHI) with measurement data from selected Baseline Surface Radiation Network sites within the area affected by each event as well as an analysis of the impact of the GHI changes in surface temperature and wind speed.

2016 ◽  
Vol 16 (9) ◽  
pp. 5949-5967 ◽  
Author(s):  
Alex Montornès ◽  
Bernat Codina ◽  
John W. Zack ◽  
Yolanda Sola

Abstract. Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP) models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014) and Europe (20 March 2015) on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting–Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950–2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5  ×  10−3 degrees (i.e.,  ∼  550 m at the Equator) and are slightly overestimated and underestimated, respectively. The second part includes a validation of the simulated global horizontal irradiance (GHI) for four total solar eclipses with measurements from the Baseline Surface Radiation Network (BSRN). The results show an improvement in mean absolute error (MAE) from 77 to 90 % under cloudless skies. Lower agreement between modeled and measured GHI is observed under cloudy conditions because the effect of clouds is not included in the simulations for a better analysis of the eclipse outcomes. Finally, an introductory discussion of eclipse-induced perturbations in the surface meteorological fields (e.g., temperature, wind speed) is provided by comparing the WRF–eclipse outcomes with control simulations.


2015 ◽  
Vol 15 (5) ◽  
pp. 2693-2707 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu) with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.


2014 ◽  
Vol 14 (14) ◽  
pp. 20231-20257
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an assessment of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified datasets used to specify the total ozone column in five schemes (i.e. Goddard, New Goddard, RRTMG, CAM and Fu–Liou–Gu) with the Multi-Sensor Reanalysis dataset during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone modeling of each parameterization. The results indicate that the maximum deviations are over the poles due to the Brewer–Dobson circulation and there are prominent longitudinal patterns in the departures due to quasi-stationary features forced by the land–sea distribution. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouger law. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics during all the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.


2017 ◽  
Vol 17 (21) ◽  
pp. 13391-13415 ◽  
Author(s):  
Daniel Rieger ◽  
Andrea Steiner ◽  
Vanessa Bachmann ◽  
Philipp Gasch ◽  
Jochen Förstner ◽  
...  

Abstract. The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.


2020 ◽  
Author(s):  
Robert Schoetter ◽  
Yu Ting Kwok ◽  
Cécile de Munck ◽  
Kevin Ka Lun Lau ◽  
Wai Kin Wong ◽  
...  

Abstract. Urban Canopy Models (UCMs) represent the exchange of momentum, heat, and moisture between cities and the atmosphere. Single-layer UCMs interact with the lowest atmospheric model level and are suited for low- to mid-rise cities whereas multi-layer UCMs interact with multiple levels and can also be employed for high-rise cities. The present study describes the multi-layer coupling between the UCM Town Energy Balance (TEB) included in the land surface model SURFEX and the mesoscale atmospheric model Meso-NH. This is a step towards better high-resolution weather prediction for urban areas in the future and studies quantifying the impact of climate change adaptation measures in high-rise cities. The effect of the buildings on the wind is considered using a drag force and a production term in the prognostic equation for turbulent kinetic energy. The heat and moisture fluxes from the walls and the roofs to the atmosphere are released at the model levels intersecting these urban facets. No variety of building height at grid point scale is considered to remain the consistency between the modification of the Meso-NH equations and the geometric assumptions of TEB. The multi-layer coupling is evaluated for the heterogeneous high-rise high-density city of Hong Kong. It leads to a strong improvement of model results for near-surface air temperature and relative humidity, which is due to better consideration of the process of horizontal advection in the urban canopy layer. For wind speed, model results are improved on average by the multi-layer coupling, but not for all stations. Future developments of the multi-layer SURFEX-TEB will focus on improving the calculation of radiative exchanges, which will allow a variety of building heights at grid point scale to be taken into account.


2020 ◽  
Author(s):  
Guoyong Wen ◽  
Alexander Marshak ◽  
Si-Chee Tsay ◽  
Jay Herman ◽  
Ukkyo Jeong ◽  
...  

Abstract. While solar eclipses are known to greatly diminish the visible radiation reaching the surface of the Earth, less is known about the magnitude of the impact. We explore both the observed and modelled level of change in surface radiation during the eclipse of 2017. We deployed a pyranometer and Pandora spectrometer instrument to Casper, Wyoming and Columbia, Missouri to measure surface broadband shortwave (SW) flux and atmospheric properties during the 21 August 2017 solar eclipse event. We performed detailed radiative transfer simulations to understand the role of clouds in spectral and broadband solar radiation transfer in the Earth’s atmosphere for the normal (non-eclipse) spectrum and red-shift solar spectra for eclipse conditions. The theoretical calculations showed that the non-eclipse-to-eclipse surface flux ratio depends strongly on the obscuration of solar disk and slightly on cloud optical depth. These findings allowed us to estimate what the surface broadband SW flux would be for non-eclipse conditions from observations during the eclipse and further to quantify the impact of the eclipse on the surface broadband SW radiation budget. We found that the eclipse caused local reductions of time-averaged surface flux of about 379 W m−2 (50 %) and 329 W m−2 (46 %) during the ∼3 hours course of the eclipse at the Casper and Columbia sites, respectively. We estimated that the Moon’s shadow caused a reduction of approximately 7–8 % in global average surface broadband SW radiation. The eclipse has a smaller impact on surface flux reduction for cloudy conditions than a clear atmosphere; the impact decreases with the increase of cloud optical depth. However, the relative time-averaged reduction of local surface SW flux during a solar eclipse is approximately 45 % and it is not sensitive to cloud optical depth. The reduction of global average SW flux relative to climatology is proportional to the non-eclipse and eclipse flux difference in the penumbra area and depends on cloud optical depth in the Moon’s shadow and geolocation due to the change of solar zenith angle. We also discuss the influence of cloud inhomogeneity on the observed SW flux. Our results not only quantify the reduction of the surface solar radiation budget but also advance the understanding of broadband SW radiative transfer under solar eclipse conditions.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1297
Author(s):  
Gundapuneni Venkata Rao ◽  
Keesara Venkata Reddy ◽  
Venkataramana Sridhar

Tropical Cyclones (TCs) are the most disastrous natural weather phenomenon, that have a significant impact on the socioeconomic development of the country. In the past two decades, Numerical Weather Prediction (NWP) models (e.g., Advanced Research WRF (ARW)) have been used for the prediction of TCs. Extensive studies were carried out on the prediction of TCs using the ARW model. However, these studies are limited to a single cyclone with varying physics schemes, or single physics schemes to more than one cyclone. Hence, there is a need to compare different physics schemes on multiple TCs to understand their effectiveness. In the present study, a total of 56 sensitivity experiments are conducted to investigate the impact of seven microphysical parameterization schemes on eight post-monsoon TCs formed over the North Indian Ocean (NIO) using the ARW model. The performance of the Ferrier, Lin, Morrison, Thompson, WSM3, WSM5, and WSM6 are evaluated using error metrics, namely Mean Absolute Error (MAE), Mean Square Error (MSE), Skill Score (SS), and average track error. The results are compared with Indian Meteorological Department (IMD) observations. From the sensitivity experiments, it is observed that the WSM3 scheme simulated the cyclones Nilofar, Kyant, Daye, and Phethai well, whereas the cyclones Hudhud, Titli, and Ockhi are best simulated by WSM6. The present study suggests that the WSM3 scheme can be used as the first best scheme for the prediction of post-monsoon tropical cyclones over the NIO.


2020 ◽  
Vol 172 ◽  
pp. 11006
Author(s):  
Kristian Skeie ◽  
Arild Gustavsen

In this paper, we evaluate a method to calculate hourly global solar radiation and improve the calculation of diffuse and vertical surface radiation on building facades by accounting for ground conditions based on publicly available data of cloud coverage, temperature and precipitation from a forecast service covering the Nordic countries. The detailed weather forecasts produced by MET Norway provide hourly forecasts for the next 60 hours, and 6-hour predictions for the next week. To calculate solar radiation on cloudy days the clear and cloudy sky MAC model developed by Davies and Mckay (1982) is used. Instead of basing the prediction on ground observations as in the original method, cloud coverage in three levels and total cloud cover is used as input in a cloud product parameterisation. The resulting global horizontal irradiance is validated against the output of the numerical weather prediction (NWP) model and compared to a year of hourly ground measurements in Trondheim, Norway. To evaluate applicability to the building sciences, vertical irradiance measurements are compared to tilted surface irradiance calculated with the ISO 52010:2017 method. For the location, six-hour forecasting performance is on par with the GHI output of the NWP model (using the cloud layer model and the available weather parameters of the location forecast API). To account for the unpredictability of clouds and improve the short-term forecasting performance beyond 38 % RMSD, 38 % SD and 0.80 R2 a different approach is needed, like combining model and sky observations.


Author(s):  
R. G. Harrison ◽  
G. J. Marlton ◽  
P. D. Williams ◽  
K. A. Nicoll

Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.


Author(s):  
R. Giles Harrison ◽  
Edward Hanna

A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10–1000 km), which is almost impossible to achieve by other means. This modern approach to ‘eclipse meteorology’ as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ). This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.


Sign in / Sign up

Export Citation Format

Share Document