scholarly journals Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation

2014 ◽  
Vol 14 (14) ◽  
pp. 20231-20257
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an assessment of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified datasets used to specify the total ozone column in five schemes (i.e. Goddard, New Goddard, RRTMG, CAM and Fu–Liou–Gu) with the Multi-Sensor Reanalysis dataset during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone modeling of each parameterization. The results indicate that the maximum deviations are over the poles due to the Brewer–Dobson circulation and there are prominent longitudinal patterns in the departures due to quasi-stationary features forced by the land–sea distribution. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouger law. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics during all the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.

2015 ◽  
Vol 15 (5) ◽  
pp. 2693-2707 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu) with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.


2016 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack ◽  
Y. Sola

Abstract. Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently result in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in adding additional detail to the modeling of solar radiation variations in Numerical Weather Prediction (NWP) models for use in solar resource assessment and forecasting applications. The recent partial and total solar eclipses that occurred in USA (October 23, 2014) and Europe (March 20, 2015), respectively, are showing the necessity for including these astronomical events on the current solar parameterizations, beyond the purely meteorological interest. Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case of study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting – Advanced Research (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm computes analytically the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid-point of the domain based on the Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid-point of the domain. This contribution is divided in two parts. First, we present a description of the implementation of the Bessel's method within the WRF-ARW model together with a validation for the period 1950-2050 of all solar eclipse trajectories with respect to NASA values. Second, we analyze the model response in four total solar eclipse episodes: 1994-11-03 (South America), 1999-08-11 (Europe), 2006-03-29 (North Africa) and 2009-07-22 (Eastern Asia). The second part includes a validation of the simulated global horizontal irradiance (GHI) with measurement data from selected Baseline Surface Radiation Network sites within the area affected by each event as well as an analysis of the impact of the GHI changes in surface temperature and wind speed.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


2009 ◽  
Vol 2 (2) ◽  
pp. 653-678 ◽  
Author(s):  
T. Sonkaew ◽  
V. V. Rozanov ◽  
C. von Savigny ◽  
A. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation and thus affect trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. The retrieval approach employed is optimal estimation, and the considered clouds are vertically and horizontally homogeneous. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to the lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above approximately 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles). For the most frequent cloud types, the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in the ozone profile retrievals generally leads to a low bias for a low ground albedo and to a high bias for a high ground albedo, assuming that the ground albedo is well known.


2017 ◽  
Vol 17 (21) ◽  
pp. 13391-13415 ◽  
Author(s):  
Daniel Rieger ◽  
Andrea Steiner ◽  
Vanessa Bachmann ◽  
Philipp Gasch ◽  
Jochen Förstner ◽  
...  

Abstract. The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.


2016 ◽  
Vol 16 (9) ◽  
pp. 5949-5967 ◽  
Author(s):  
Alex Montornès ◽  
Bernat Codina ◽  
John W. Zack ◽  
Yolanda Sola

Abstract. Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP) models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014) and Europe (20 March 2015) on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting–Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950–2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5  ×  10−3 degrees (i.e.,  ∼  550 m at the Equator) and are slightly overestimated and underestimated, respectively. The second part includes a validation of the simulated global horizontal irradiance (GHI) for four total solar eclipses with measurements from the Baseline Surface Radiation Network (BSRN). The results show an improvement in mean absolute error (MAE) from 77 to 90 % under cloudless skies. Lower agreement between modeled and measured GHI is observed under cloudy conditions because the effect of clouds is not included in the simulations for a better analysis of the eclipse outcomes. Finally, an introductory discussion of eclipse-induced perturbations in the surface meteorological fields (e.g., temperature, wind speed) is provided by comparing the WRF–eclipse outcomes with control simulations.


2014 ◽  
Vol 53 (11) ◽  
pp. 2571-2588 ◽  
Author(s):  
Alberto Troccoli ◽  
Jean-Jacques Morcrette

AbstractPrediction of direct solar radiation is key in sectors such as solar power and agriculture; for instance, it can enable more efficient production of energy from concentrating solar power plants. An assessment of the quality of the direct solar radiation forecast by two versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) global numerical weather prediction model up to 5 days ahead is carried out here. The performance of the model is measured against observations from four solar monitoring stations over Australia, characterized by diverse geographic and climatic features, for the year 2006. As a reference, the performance of global radiation forecast is carried out as well. In terms of direct solar radiation, while the skill of the two model versions is very similar, and with relative mean absolute errors (rMAEs) ranging from 18% to 45% and correlations between 0.85 and 0.25 at around midday, their performance is substantially enhanced via a simple postprocessing bias-correction procedure. There is a marked dependency on cloudy conditions, with rMAEs 2–4 times as large for very cloudy-to-overcast conditions relative to clear-sky conditions. There is also a distinct dependency on the background climatic clear-sky conditions of the location considered. Tests made on a simulated operational setup targeting three quantiles show that direct radiation forecasts achieve potentially high scores. Overall, these analyses provide an indication of the potential practical use of direct irradiance forecast for applications such as solar power operations.


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 193
Author(s):  
Marcin Brzezicki

The current study investigates the issue of computer-aided daylight evaluation in a museum room with a dropped translucent ceiling. In this type of room, daylight is admitted through classic windows located in the facade and then distributed in the plenum, which is located above the exhibition space and transmitted through the translucent ceiling into the museum room. This illumination method enables guiding daylight deep into the room, excluding the impact of direct solar radiation. The presented study is based on data obtained through computer-aided daylight simulation by DeLuminæ (DL-Light, ver. 11.0.9) software using the Radiance software for all calculations and real weather data for Wroclaw, Poland. A museum room of 12 × 12 m with three different heights of the plenums was simulated to establish an optimal relation of the width to height plenum ratio. Next, the annual exposure in K lx·h/year was calculated, as sensitive works of art may be subjected to damage caused by light exposure. To further reduce illumination, the simulation of an automatic shading system in the form of horizontal louvers was performed. The system was activated when certain illumination values were detected by the sensor on the building’s roof.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1297
Author(s):  
Gundapuneni Venkata Rao ◽  
Keesara Venkata Reddy ◽  
Venkataramana Sridhar

Tropical Cyclones (TCs) are the most disastrous natural weather phenomenon, that have a significant impact on the socioeconomic development of the country. In the past two decades, Numerical Weather Prediction (NWP) models (e.g., Advanced Research WRF (ARW)) have been used for the prediction of TCs. Extensive studies were carried out on the prediction of TCs using the ARW model. However, these studies are limited to a single cyclone with varying physics schemes, or single physics schemes to more than one cyclone. Hence, there is a need to compare different physics schemes on multiple TCs to understand their effectiveness. In the present study, a total of 56 sensitivity experiments are conducted to investigate the impact of seven microphysical parameterization schemes on eight post-monsoon TCs formed over the North Indian Ocean (NIO) using the ARW model. The performance of the Ferrier, Lin, Morrison, Thompson, WSM3, WSM5, and WSM6 are evaluated using error metrics, namely Mean Absolute Error (MAE), Mean Square Error (MSE), Skill Score (SS), and average track error. The results are compared with Indian Meteorological Department (IMD) observations. From the sensitivity experiments, it is observed that the WSM3 scheme simulated the cyclones Nilofar, Kyant, Daye, and Phethai well, whereas the cyclones Hudhud, Titli, and Ockhi are best simulated by WSM6. The present study suggests that the WSM3 scheme can be used as the first best scheme for the prediction of post-monsoon tropical cyclones over the NIO.


Sign in / Sign up

Export Citation Format

Share Document