scholarly journals Wildfires in Northern Eurasia affect the budget of black carbon in the Arctic. A 12-year retrospective synopsis (2002–2013).

Author(s):  
N. Evangeliou ◽  
Y. Balkanski ◽  
W. M. Hao ◽  
A. Petkov ◽  
R. P. Silverstein ◽  
...  

Abstract. In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in Northern Eurasia during the period of 2002–2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from Northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory – Northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (MODerate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were estimated using the MACCity (Monitoring Atmospheric Composition & Climate/megaCITY – Zoom for the ENvironment) emission inventory. During the 12-year period, an average area of 250,000 km2 yr−1 was burned in Northern Eurasia and the global emissions of BC ranged between 8.0 and 9.5 Tg yr−1. For the BC emitted in the Northern Hemisphere, about 70 % originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE inventory, we found that 102 ± 29 kt yr−1 BC from biomass burning was deposited on the Arctic (defined here as the area north of 67º N) during the 12 years simulated, which was twice as much as when using MACCity inventory (56 ± 8 kt yr−1). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in Northern Eurasia, MACCity elsewhere) is significantly higher by about 37 % in 2009 to 181 % in 2012, compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68 % of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85 % (79–91 %) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere. Arctic total BC burden showed strong seasonal variations, with highest values during the Arctic Haze season. High winter–spring values of BC burden were caused by transport of BC mainly from anthropogenic sources in Europe, whereas the peak in summer was mainly due to the fire emissions in Northern Eurasia. BC particles emitted from fires in lower latitudes (35° N–40° N) were found to remain the longest in the atmosphere due to the high release altitudes of smoke plumes, exhibit tropospheric transport resulting in a high summer peak of burden, and grow by condensation processes. In regards to the geographic contribution on the deposition of BC, we estimated that about 46 % of the BC deposited over the Arctic from vegetation fires in Northern Eurasia originated from Siberia, 6 % from Kazakhstan, 5 % from Europe, and about 1 % from Mongolia. The remaining 42 % originated from other areas in Northern Eurasia. For spring and summer, we computed that 42 % of the BC released from Northern Eurasian vegetation fires was deposited over the Arctic (annual average: 17 %). Vegetation fires in Northern Eurasia contributed to 14 % to 57 % of BC surface concentrations at the Arctic stations (Alert, Barrow, Zeppelin, Villum, and Tiksi), with fires in Siberia contributing the largest share. However, anthropogenic sources in the Northern Hemisphere remain essential, contributing 29 % to 54 % to the surface concentrations at the Arctic monitoring stations. The rest originated from North American fires.

2016 ◽  
Vol 16 (12) ◽  
pp. 7587-7604 ◽  
Author(s):  
N. Evangeliou ◽  
Y. Balkanski ◽  
W. M. Hao ◽  
A. Petkov ◽  
R. P. Silverstein ◽  
...  

Abstract. In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002–2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory – northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory.During the 12-year period, an average area of 250 000 km2 yr−1 was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5 Tg yr−1 (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70 % originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102 ± 29 kt yr−1 BC was deposited in the Arctic (defined here as the area north of 67° N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56 ± 8 kt yr−1). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37 % in 2009 (78 vs. 57 kt yr−1) to 181 % in 2012 (153 vs. 54 kt yr−1), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68 % of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85 % (79–91 %) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere.We estimate that about 46 % of the BC deposited over the Arctic from vegetation fires in northern Eurasia originated from Siberia, 6 % from Kazakhstan, 5 % from Europe, and about 1 % from Mongolia. The remaining 42 % originated from other areas in northern Eurasia. About 42 % of the BC released from northern Eurasian vegetation fires was deposited over the Arctic (annual average: 17 %) during spring and summer.


2021 ◽  
Vol 18 (18) ◽  
pp. 5053-5083
Author(s):  
Jessica L. McCarty ◽  
Juha Aalto ◽  
Ville-Veikko Paunu ◽  
Steve R. Arnold ◽  
Sabine Eckhardt ◽  
...  

Abstract. In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65∘ N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60∘ N, with 56 % of black carbon emissions above 65∘ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.


2017 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Daven K. Henze ◽  
Hsien-Liang Tseng ◽  
Cenlin He

Abstract. We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 %) before April 18 and by Siberian open biomass burning emissions (29–41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (April 20–25) to global emissions from March 1 to April 25. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 %), and natural gas flaring emissions in the Western Extreme North of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji), the biggest urbanized region in Northern China, contribute significantly (~ 10 %) to surface BC across the Arctic. On average it takes ~ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic, direct transport events dominate BC at Denali (87 %), a site outside the Arctic front, a strong transport barrier. The relative contribution of direct transport to surface BC within the Arctic front is much smaller (~ 50 % at Barrow and Zeppelin and ~ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of ‘chronic’ pollution (~ 40 % at Barrow and 65 % at Alert and 57 % at Zeppelin) on 1–2 month timescales. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic. Both finer temporal resolution of biomass burning emissions and accounting for the Wegener-Bergeron-Findeisen (WBF) process in wet scavenging improve the source attribution estimates.


2018 ◽  
Author(s):  
Igor B. Konovalov ◽  
Daria A. Lvova ◽  
Matthias Beekmann ◽  
Hiren Jethva ◽  
Eugene F. Mikhailov ◽  
...  

Abstract. Black carbon (BC) emissions from open biomass burning (BB) are known to have a considerable impact on the radiative budget of the atmosphere on global and regional scales but are poorly constrained in models by atmospheric observations, especially in remote regions. Here, we investigate the feasibility of constraining BC emissions from BB with satellite observations of the aerosol absorption optical depth (AAOD) and the aerosol extinction optical depth (AOD) retrieved from OMI (Ozone monitoring instrument) and MODIS (Moderate Resolution Imaging Spectroradiometer) measurements, respectively. We consider the case of Siberian BB BC emissions, which have a strong potential to impact the Arctic climate system. Using aerosol remote sensing data collected at Siberian sites of the Aerosol Robotic Network (AERONET) along with the results of the Fourth Fire Lab at Missoula Experiment (FLAME-4), we establish an empirical parameterization relating the ratio of the elemental carbon (EC) and organic carbon (OC) contents in BB aerosol to the ratio of AAOD and AOD at the wavelengths of the satellite observations. Applying this parameterization to the BC and OC column amounts simulated with the CHIMERE chemistry transport model, we optimize the parameters of the BB emission model based on MODIS measurements of the fire radiative power (FRP) and obtain top-down optimized estimates of the total monthly BB BC amounts emitted from intense Siberian fires that occurred in May–September 2012. The top-down estimates are compared to the corresponding values obtained using the Global Fire Emissions Database (GFED4) and the Fire Emission Inventory–northern Eurasia (FEI-NE). Our simulations using the optimized BB aerosol emissions are verified against AAOD and AOD data that were withheld from the estimation procedure. The simulations are further evaluated against in situ EC and OC measurements at the Zotino Tall Tower Observatory (ZOTTO) and also against aerosol measurement data collected on board of an aircraft in the framework of the Airborne Extensive Regional Observations (YAK-AEROSIB) experiments. We conclude that our BC and OC emission estimates, considered with their confidence intervals, are consistent with the ensemble of the measurement data analyzed in this study. Siberian fires are found to emit 0.41 ± 0.14 Tg of BC over the whole period of the five months considered; this estimate is a factor of 2 larger and a factor of 1.5 smaller compared to that the corresponding estimates based on the GFED4 (0.20 Tg) and FEI-NE (0.61 Tg) data, respectively. Our estimates of monthly BC emissions are also found to be larger than the BC amounts calculated with the GFED4 data and smaller than those calculated with the FEI-NE data for any of the five months. Especially large positive differences of our estimates of monthly BC emissions with respect to the GFED4 data are found in May and September. This finding indicates that the GFED4 database is likely to strongly underestimate BC emissions from agricultural burns and grass fires in Siberia. All these differences have important implications for climate change in the Arctic, as it is found that about a quarter of the huge BB BC mass emitted in Siberia during the fire season of 2012 was transported across the polar circle into the Arctic. Overall, the results of our analysis indicate that a combination of the available satellite observations of AAOD and AOD can provide the necessary constraints on BB BC emissions.


2021 ◽  
Author(s):  
Sho Ohata ◽  
Makoto Koike ◽  
Atsushi Yoshida ◽  
Nobuhiro Moteki ◽  
Kouji Adachi ◽  
...  

Abstract. Vertical profiles of the mass concentration of black carbon (BC) were measured at altitudes up to 5 km during the PAMARCMiP aircraft-based field experiment conducted around the Northern Greenland Sea (Fram Strait) during March and April 2018, with operation base Station Nord (81.6° N, 16.7° W). Median BC mass concentrations in individual altitude ranges were 7–18 ng m–3 at standard temperature and pressure at altitudes below 4.5 km. These concentrations were systematically lower than previous observations in the Arctic in spring conducted by ARCTAS-A in 2008 and NETCARE in 2015 and similar to those observed during HIPPO3 in 2010. Column amounts of BC for altitudes below 5 km in the Arctic (> 66.5° N, COLBC), observed during the ARCTAS-A and NETCARE experiments were higher by factors of 4.2 and 2.7, respectively, than those of the PAMARCMiP experiment. These differences could not be explained solely by the different locations of the experiments. The year-to-year variation of COLBC values generally corresponded to that of biomass burning activities in northern high latitudes over western and eastern Eurasia. Furthermore, numerical model simulations estimated the year-to-year variation of contributions from anthropogenic sources to be smaller than 30–40 %. These results suggest that the year-to-year variation of biomass burning activities likely affected BC amounts in the Arctic troposphere in spring, at least in the years examined in this study. The year-to-year variations in BC mass concentrations were also observed at the surface at high Arctic sites Ny-Ålesund and Barrow, although their magnitudes were slightly lower than those in COLBC. Numerical model simulations in general successfully reproduced the observed COLBC values for PAMARCMiP and HIPPO3 (within a factor of 2), whereas they markedly underestimated the values for ARCTAS-A and NETCARE by factors of 3.7–5.8 and 3.3–5.0, respectively. Because anthropogenic contributions account for nearly all of the COLBC (82–98 %) in PAMARCMiP and HIPPO3, the good agreements between the observations and calculations for these two experiments suggest that anthropogenic contributions were generally well reproduced. However, the significant underestimations of COLBC for ARCTAS-A and NETCARE suggest that biomass burning contributions were underestimated. In this study, we also investigated plumes with enhanced BC mass concentrations, which were affected by biomass burning emissions, observed at 5 km altitude. Interestingly, the mass-averaged diameter of BC (core) and the shell-to-core diameter ratio of BC-containing particles in the plumes were generally not very different from those in other air sampled, which were considered to be mostly aged anthropogenic BC. These observations provide useful bases to evaluate numerical model simulations of the BC radiative effect in the Arctic region in spring.


2017 ◽  
Vol 17 (12) ◽  
pp. 7605-7633 ◽  
Author(s):  
Jonathan J. Guerrette ◽  
Daven K. Henze

Abstract. Biomass burning emissions of atmospheric aerosols, including black carbon, are growing due to increased global drought, and comprise a large source of uncertainty in regional climate and air quality studies. We develop and apply new incremental four-dimensional variational (4D-Var) capabilities in WRFDA-Chem to find optimal spatially and temporally distributed biomass burning (BB) and anthropogenic black carbon (BC) aerosol emissions. The constraints are provided by aircraft BC concentrations from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites in collaboration with the California Air Resources Board (ARCTAS-CARB) field campaign and surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network on 22, 23, and 24 June 2008. We consider three BB inventories, including Fire INventory from NCAR (FINN) v1.0 and v1.5 and Quick Fire Emissions Database (QFED) v2.4r8. On 22 June, aircraft observations are able to reduce the spread between a customized QFED inventory and FINNv1.0 from a factor of 3. 5 ( × 3. 5) to only × 2. 1. On 23 and 24 June, the spread is reduced from × 3. 4 to × 1. 4. The posterior corrections to emissions are heterogeneous in time and space, and exhibit similar spatial patterns of sign for both inventories. The posterior diurnal BB patterns indicate that multiple daily emission peaks might be warranted in specific regions of California. The US EPA's 2005 National Emissions Inventory (NEI05) is used as the anthropogenic prior. On 23 and 24 June, the coastal California posterior is reduced by × 2, where highway sources dominate, while inland sources are increased near Barstow by × 5. Relative BB emission variances are reduced from the prior by up to 35 % in grid cells close to aircraft flight paths and by up to 60 % for fires near surface measurements. Anthropogenic variance reduction is as high as 40 % and is similarly limited to sources close to observations. We find that the 22 June aircraft observations are able to constrain approximately 14 degrees of freedom of signal (DOF), while surface and aircraft observations together on 23/24 June constrain 23 DOF. Improving hourly- to daily-scale concentration predictions of BC and other aerosols during BB events will require more comprehensive and/or targeted measurements and a more complete accounting of sources of error besides the emissions.


2020 ◽  
Vol 20 (3) ◽  
pp. 1641-1656 ◽  
Author(s):  
Chunmao Zhu ◽  
Yugo Kanaya ◽  
Masayuki Takigawa ◽  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
...  

Abstract. The Arctic environment is undergoing rapid changes such as faster warming than the global average and exceptional melting of glaciers in Greenland. Black carbon (BC) particles, which are a short-lived climate pollutant, are one cause of Arctic warming and glacier melting. However, the sources of BC particles are still uncertain. We simulated the potential emission sensitivity of atmospheric BC present over the Arctic (north of 66∘ N) using the FLEXPART (FLEXible PARTicle) Lagrangian transport model (version 10.1). This version includes a new aerosol wet removal scheme, which better represents particle-scavenging processes than older versions did. Arctic BC at the surface (0–500 m) and high altitudes (4750–5250 m) is sensitive to emissions in high latitude (north of 60∘ N) and mid-latitude (30–60∘ N) regions, respectively. Geospatial sources of Arctic BC were quantified, with a focus on emissions from anthropogenic activities (including domestic biofuel burning) and open biomass burning (including agricultural burning in the open field) in 2010. We found that anthropogenic sources contributed 82 % and 83 % of annual Arctic BC at the surface and high altitudes, respectively. Arctic surface BC comes predominantly from anthropogenic emissions in Russia (56 %), with gas flaring from the Yamalo-Nenets Autonomous Okrug and Komi Republic being the main source (31 % of Arctic surface BC). These results highlight the need for regulations to control BC emissions from gas flaring to mitigate the rapid changes in the Arctic environment. In summer, combined open biomass burning in Siberia, Alaska, and Canada contributes 56 %–85 % (75 % on average) and 40 %–72 % (57 %) of Arctic BC at the surface and high altitudes, respectively. A large fraction (40 %) of BC in the Arctic at high altitudes comes from anthropogenic emissions in East Asia, which suggests that the rapidly growing economies of developing countries could have a non-negligible effect on the Arctic. To our knowledge, this is the first year-round evaluation of Arctic BC sources that has been performed using the new wet deposition scheme in FLEXPART. The study provides a scientific basis for actions to mitigate the rapidly changing Arctic environment.


2017 ◽  
Vol 17 (15) ◽  
pp. 9697-9716 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Daven K. Henze ◽  
Hsien-Liang Tseng ◽  
Cenlin He

Abstract. We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 %) before 18 April and by Siberian open biomass burning emissions (29–41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (20–25 April) to global emissions from 1 March to 25 April. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 % of total anthropogenic contributions), and natural gas flaring emissions in the western extreme north of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing–Tianjin–Hebei (also known as Jing–Jin–Ji), the biggest urbanized region in northern China, contribute significantly (∼ 10 %) to surface BC across the Arctic. On average, it takes ∼ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach the Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic transport events dominate BC at Denali (87 %), a site outside the Arctic front, which is a strong transport barrier. The relative contribution of these events to surface BC within the polar dome is much smaller (∼ 50 % at Barrow and Zeppelin and ∼ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of chronic pollution (∼ 40 % at Barrow, 65 % at Alert, and 57 % at Zeppelin) on about a 1-month timescale. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic.


2019 ◽  
Author(s):  
Chunmao Zhu ◽  
Yugo Kanaya ◽  
Masayuki Takigawa ◽  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
...  

Abstract. The Arctic environment is undergoing rapid changes such as faster warming than the global average and exceptional melting of glaciers in Greenland. Black carbon (BC) particles, which are a short-lived climate pollutant, are one cause of Arctic warming and glacier melting. However, the sources of BC particles are still uncertain. We simulated the potential emission sensitivity of atmospheric BC present over the Arctic (north of 66° N) using the Flexpart Lagrangian transport model (version 10.1). This version includes a new aerosol wet removal scheme, which better represents particle-scavenging processes than older versions did. Arctic BC at the surface (0–500 m) and high altitudes (4750–5250 m) is sensitive to emissions in high latitude (> 60° N) and mid-latitude (30–60° N) regions, respectively. Geospatial sources of Arctic BC were quantified, with a focus on emissions from anthropogenic activities and biomass burning in 2010. We found that anthropogenic sources contributed 82 % and 83 % of annual Arctic BC at the surface and high altitudes, respectively. Arctic surface BC comes predominantly from anthropogenic emissions in Russia (56 %), with gas flaring from the Yamalo-Nenets Autonomous Okrug and Komi Republic being the main source (31 % of Arctic surface BC). These results highlight the need for regulations to control BC emissions from gas flaring to mitigate the rapid changes in the Arctic environment. In summer, combined biomass burning in Siberia, Alaska, and Canada contributes 56–85 % (75 % on average) and 40–72 % (57 %) of Arctic BC at the surface and high altitudes, respectively. A large fraction (40 %) of BC in the Arctic at high altitudes comes from anthropogenic emissions in East Asia, which suggests that the rapidly growing economies of developing countries could have a non-negligible effect on the Arctic. To our knowledge, this is the first year-round evaluation of Arctic BC sources that has been performed using the new wet deposition scheme in Flexpart. The study provides a scientific basis for actions to mitigate the rapidly changing Arctic environment.


2017 ◽  
Vol 17 (18) ◽  
pp. 10969-10995 ◽  
Author(s):  
Jean-Christophe Raut ◽  
Louis Marelle ◽  
Jerome D. Fast ◽  
Jennie L. Thomas ◽  
Bernadett Weinzierl ◽  
...  

Abstract. During the ACCESS airborne campaign in July 2012, extensive boreal forest fires resulted in significant aerosol transport to the Arctic. A 10-day episode combining intense biomass burning over Siberia and low-pressure systems over the Arctic Ocean resulted in efficient transport of plumes containing black carbon (BC) towards the Arctic, mostly in the upper troposphere (6–8 km). A combination of in situ observations (DLR Falcon aircraft), satellite analysis and WRF-Chem simulations is used to understand the vertical and horizontal transport mechanisms of BC with a focus on the role of wet removal. Between the northwestern Norwegian coast and the Svalbard archipelago, the Falcon aircraft sampled plumes with enhanced CO concentrations up to 200 ppbv and BC mixing ratios up to 25 ng kg−1. During transport to the Arctic region, a large fraction of BC particles are scavenged by two wet deposition processes, namely wet removal by large-scale precipitation and removal in wet convective updrafts, with both processes contributing almost equally to the total accumulated deposition of BC. Our results underline that applying a finer horizontal resolution (40 instead of 100 km) improves the model performance, as it significantly reduces the overestimation of BC levels observed at a coarser resolution in the mid-troposphere. According to the simulations at 40 km, the transport efficiency of BC (TEBC) in biomass burning plumes was larger (60 %), because it was impacted by small accumulated precipitation along trajectory (1 mm). In contrast TEBC was small (< 30 %) and accumulated precipitation amounts were larger (5–10 mm) in plumes influenced by urban anthropogenic sources and flaring activities in northern Russia, resulting in transport to lower altitudes. TEBC due to large-scale precipitation is responsible for a sharp meridional gradient in the distribution of BC concentrations. Wet removal in cumulus clouds is the cause of modeled vertical gradient of TEBC, especially in the mid-latitudes, reflecting the distribution of convective precipitation, but is dominated in the Arctic region by the large-scale wet removal associated with the formation of stratocumulus clouds in the planetary boundary layer (PBL) that produce frequent drizzle.


Sign in / Sign up

Export Citation Format

Share Document