scholarly journals Brown carbon absorption in the red and near infrared spectral region

Author(s):  
A. Hoffer ◽  
A. Tóth ◽  
M. Pósfai ◽  
C. E. Chung ◽  
A. Gelencsér

Abstract. Black carbon aerosols have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure aerosol absorption in the field. We find that the absorption coefficient of tar balls at 880 nm exceeds 10 % of that at 470 nm. This substantial absorption of red and infrared light is also evident from a relatively low Ångström coefficient (and a significant mass absorption coefficient) of tar balls between 470 and 950 nm. Retrievals of aerosol column optical properties from a global network of surface stations over vast tropical areas dominated by biomass burning suggest that tar balls are the predominant light-absorbing species of organic aerosols over acetone/methanol-soluble BrC or HULIS. Our results also infer that the role of BC (including Diesel soot) in global climate forcing has likely been overestimated at the expense of brown carbon (BrC) from biomass burning.

2017 ◽  
Author(s):  
András Hoffer ◽  
Ádám Tóth ◽  
Mihály Pósfai ◽  
Chul Eddy Chung ◽  
András Gelencsér

Abstract. Black carbon aerosols (BC) have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the infrared region the absorption measured in the field at higher wavelengths may not solely due to soot particles.


2017 ◽  
Vol 10 (6) ◽  
pp. 2353-2359 ◽  
Author(s):  
András Hoffer ◽  
Ádám Tóth ◽  
Mihály Pósfai ◽  
Chul Eddy Chung ◽  
András Gelencsér

Abstract. Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.


2002 ◽  
Vol 47 (12) ◽  
pp. 2059-2073 ◽  
Author(s):  
A N Yaroslavsky ◽  
P C Schulze ◽  
I V Yaroslavsky ◽  
R Schober ◽  
F Ulrich ◽  
...  

2019 ◽  
Vol 61 (6) ◽  
pp. 1204
Author(s):  
Г.И. Миронов

AbstractThe electronic and optical properties of gold fullerenes are studied in the framework of the Hubbard model. The expressions of the Fourier transforms of anticommutator Green functions have been obtained for gold fullerenes Au_16 and Au_20, the poles of which determine the energy spectrum of the system under consideration. The calculations are performed for the thermodynamic means that characterize jumps of electrons from a nanosystem site to a neighboring site, the correlation functions demonstrating the possibility of existing two d electrons with oppositely oriented spin projections on the same site of the fullerenes consisting of gold atoms. The optical absorption spectra are presented. The optical absorption peaks of ions $${\text{Au}}_{{20}}^{ - }$$ and $${\text{Au}}_{{16}}^{ - }$$ correspond to a near-infrared spectral region, where the light absorption by blood or a soft tissue is vanishingly small; thus, these ions can be used as a new class of contrast improvements and phototherapeutic means for diagnostics and treatment of cancer.


2019 ◽  
Vol 19 (17) ◽  
pp. 11213-11233 ◽  
Author(s):  
Xiaoyan Liu ◽  
Yan-Lin Zhang ◽  
Yiran Peng ◽  
Lulu Xu ◽  
Chunmao Zhu ◽  
...  

Abstract. Biomass burning can significantly impact the chemical and optical properties of carbonaceous aerosols. Here, the biomass burning impacts were studied during wintertime in a megacity of Nanjing, eastern China. The high abundance of biomass burning tracers such as levoglucosan (lev), mannosan (man), galactosan (gal) and non-sea-salt potassium (nss-K+) was found during the studied period with the concentration ranges of 22.4–1476 ng m−3, 2.1–56.2 ng m−3, 1.4–32.2 ng m−3 and 0.2–3.8 µg m−3, respectively. The significant contribution of biomass burning to water-soluble organic carbon (WSOC; 22.3±9.9 %) and organic carbon (OC; 20.9±9.3 %) was observed in this study. Backward air mass origin analysis, potential emission sensitivity of elemental carbon (EC) and MODIS fire spot information indicated that the elevations of the carbonaceous aerosols were due to the transported biomass-burning aerosols from southeastern China. The characteristic mass ratio maps of lev∕man and lev∕nss-K+ suggested that the biomass fuels were mainly crop residuals. Furthermore, the strong correlation (p < 0.01) between biomass burning tracers (such as lev) and light absorption coefficient (babs) for water-soluble brown carbon (BrC) revealed that biomass burning emissions played a significant role in the light-absorption properties of carbonaceous aerosols. The solar energy absorption due to water-soluble brown carbon and EC was estimated by a calculation based on measured light-absorbing parameters and a simulation based on a radiative transfer model (RRTMG_SW). The solar energy absorption of water-soluble BrC in short wavelengths (300–400 nm) was 0.8±0.4 (0.2–2.3) W m−2 (figures in parentheses represent the variation range of each parameter) from the calculation and 1.2±0.5 (0.3–1.9) W m−2 from the RRTMG_SW model. The absorption capacity of water-soluble BrC accounted for about 20 %–30 % of the total absorption of EC aerosols. The solar energy absorption of water-soluble BrC due to biomass burning was estimated as 0.2±0.1 (0.0–0.9) W m−2, considering the biomass burning contribution to carbonaceous aerosols. Potential source contribution function model simulations showed that the solar energy absorption induced by water-soluble BrC and EC aerosols was mostly due to the regionally transported carbonaceous aerosols from source regions such as southeastern China. Our results illustrate the importance of the absorbing water-soluble brown carbon aerosols in trapping additional solar energy in the low-level atmosphere, heating the surface and inhibiting the energy from escaping the atmosphere.


2020 ◽  
Vol 20 (4) ◽  
pp. 2017-2030 ◽  
Author(s):  
Can Wu ◽  
Gehui Wang ◽  
Jin Li ◽  
Jianjun Li ◽  
Cong Cao ◽  
...  

Abstract. To investigate the characteristics of atmospheric brown carbon (BrC) in the semiarid region of East Asia, PM2.5 and size-resolved particles in the urban atmosphere of Xi'an, inland China, during the winter and summer of 2017 were collected and analyzed for optical properties and chemical compositions. Methanol extracts (MeOH extracts) were more light-absorbing than water extracts (H2O extracts) in the optical wavelength of 300–600 nm and well correlated with nitrophenols, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (r > 0.78). The light absorptions (absλ=365 nm) of H2O extracts and MeOH extracts in winter were 28±16 and 49±32 M m−1, respectively, which are about 10 times higher than those in summer, mainly due to the enhanced emissions from biomass burning for house heating. Water-extracted BrC predominately occurred in the fine mode (< 2.1 µm) during winter and summer, accounting for 81 % and 65 % of the total absorption of BrC, respectively. The light absorption and stable carbon isotope composition measurements showed an increasing ratio of absλ=365 nm-MeOH to absλ=550 nm-EC along with an enrichment of 13C in PM2.5 during the haze development, indicating an accumulation of secondarily formed BrC (e.g., nitrophenols) in the aerosol aging process. Positive matrix factorization (PMF) analysis showed that biomass burning, fossil fuel combustion, secondary formation, and fugitive dust are the major sources of BrC in the city, accounting for 55 %, 19 %, 16 %, and 10 % of the total BrC of PM2.5, respectively.


2011 ◽  
Vol 306-307 ◽  
pp. 1722-1727 ◽  
Author(s):  
Man Mei ◽  
Li Li Cao ◽  
Yan He ◽  
Ru Ru Zhang ◽  
Fei Yun Guo ◽  
...  

The calcium terbium aluminate (CaTbAlO4) single crystal was grown by Czochralski method successfully for the first time.The structure of the crystal was determined by X-ray diffraction analysis.The transmission spectrum of the crystal was measured at room temperature at the wavelength of 400-1500nm.The specific Faraday rotation of the single crystal was surveyed at room temperature at the wavelength 532nm, 633nm, and 1064nm respectively.The Verdet constants of the CaTbAlO4 crystal are calculated and the results show that the Verdet constants of CaTbAlO4 are around 110% higher than that of TGG in the visible and near-infrared spectral region.Therefore,crystal CaTbAlO4 can be promising material for the fabrication of magneto-optical devices in the visible region.


Sign in / Sign up

Export Citation Format

Share Document