scholarly journals Value-added by high-resolution regional simulations of climate-relevant aerosol properties

2016 ◽  
Author(s):  
P. Crippa ◽  
R. C. Sullivan ◽  
A. Thota ◽  
S. C. Pryor

Abstract. Despite recent advances in global Earth System Models (ESMs), the current global mean aerosol direct and indirect radiative effects remain uncertain, as does their future role in climate forcing and regional manifestations. Reasons for this uncertainty include the high spatio-temporal variability of aerosol populations. Thus, limited area (regional) models applied at higher resolution over specific regions of interest are generally expected to "add value", i.e. improve the fidelity of the physical-dynamical-chemical processes that induce extreme events and dictate climate forcing, via more realistic representation of spatio-temporal variability. However, added value is not inevitable, and there remains a need to optimize use of numerical resources, and to quantify the impact on simulation fidelity that derives from increased resolution. Here we quantify the value added by enhanced spatial resolution in simulations of the drivers of aerosol direct radiative forcing by applying the Weather Research and Forecasting model with coupled Chemistry (WRF-Chem) over eastern North America at different resolutions. Using Brier Skill Scores and other statistical metrics it is shown that enhanced resolution (from 60 to 12 km) improves model performance for all of the meteorological parameters and gas phase concentrations considered, in addition to both mean and extreme Aerosol Optical Depth (AOD) in three wavelengths in the visible relative to satellite observations, principally via increase of potential skill. Some of the enhanced model performance for AOD appears to be attributable to improved simulation of specific humidity and the resulting impact on aerosol hygroscopic growth/hysteresis.

2017 ◽  
Vol 17 (2) ◽  
pp. 1511-1528 ◽  
Author(s):  
Paola Crippa ◽  
Ryan C. Sullivan ◽  
Abhinav Thota ◽  
Sara C. Pryor

Abstract. Limited area (regional) models applied at high resolution over specific regions of interest are generally expected to more accurately capture the spatiotemporal variability of key meteorological and climate parameters. However, improved performance is not inevitable, and there remains a need to optimize use of numerical resources and to quantify the impact on simulation fidelity that derives from increased resolution. The application of regional models for climate forcing assessment is currently limited by the lack of studies quantifying the sensitivity to horizontal spatial resolution and the physical–dynamical–chemical schemes driving the simulations. Here we investigate model skill in simulating meteorological, chemical and aerosol properties as a function of spatial resolution, by applying the Weather Research and Forecasting model with coupled Chemistry (WRF-Chem) over eastern North America at different resolutions. Using Brier skill scores and other statistical metrics it is shown that enhanced resolution (from 60 to 12 km) improves model performance for all of the meteorological parameters and gas-phase concentrations considered, in addition to both mean and extreme aerosol optical depth (AOD) in three wavelengths in the visible relative to satellite observations, principally via increase of potential skill. Some of the enhanced model performance for AOD appears to be attributable to improved simulation of meteorological conditions and the concentration of key aerosol precursor gases (e.g., SO2 and NH3). Among other reasons, a dry bias in the specific humidity in the boundary layer and a substantial underestimation of total monthly precipitation in the 60 km simulations are identified as causes for the better performance of WRF-Chem simulations at 12 km.


2021 ◽  
Author(s):  
Adam El-Said ◽  
Pierre Brousseau ◽  
Roger Randriamampianina ◽  
Martin Ridal

<p>A new augmented Ensemble of Data Assimilations (EDA) technique, which estimates background error covariances (B-matrix), has been developed for the new Copernicus European Regional Re-Analysis (CERRA-EDA). CERRA-EDA has 10 members with two main pools of forecast differences: seasonal and daily. The seasonal component is pre-prepared (`offline') at reanalysis-resolution (5.5km). The new augmentation governs the time-dependent mixture of winter and summer differences of this seasonal component with respect to the time of year. The daily component is (`online') and averaged in moving succession over 2.5 days with subsequent B-matrix computation every 2 days. This daily component runs at 11km and the forecasts are interpolated to 5.5km prior to use. The seasonal-daily split is set to a fixed value of 80-20\% for CERRA production. The EDA is cycled 6-hourly while CERRA has a 3-hour analysis cycle. The B-matrix is modelled on a bi-Fourier limited area weather model, where dependence of vertical correlations on horizontal scale (non-separability), horizontal homogeneity and isotropy are assumed. The mass-wind and specific humidity fields are related via vorticity and geopotential and the relationships are estimated via multiple linear regressions enforcing simplified analogues of flow-dependence. </p><p>We demonstrate the potential of CERRA-EDA to estimate rapid changes in weather regime change over Europe by assessing B-matrix statistics and forecast skill scores in a case study. The case study assesses two like-periods bearing different weather regimes, Mar-03 (blocking regime) and Mar-18 (NAO- regime). The aptitude of the B-matrix to reflect weather regime change is shown to be mostly dependent on the observation network in a given year. We also illustrate the impact of: change in observation networks over time, and varying the seasonal-daily split. This is shown through analysing the spatio-temporal evolution of background standard deviations. Finally, analysis and forecast skill scores up to 24-hours are also shown to offer improvements worth considering.</p>


2011 ◽  
Vol 57 (202) ◽  
pp. 367-381 ◽  
Author(s):  
Francesca Pellicciotti ◽  
Thomas Raschle ◽  
Thomas Huerlimann ◽  
Marco Carenzo ◽  
Paolo Burlando

AbstractWe explore the robustness and transferability of parameterizations of cloud radiative forcing used in glacier melt models at two sites in the Swiss Alps. We also look at the rationale behind some of the most commonly used approaches, and explore the relationship between cloud transmittance and several standard meteorological variables. The 2 m air-temperature diurnal range is the best predictor of variations in cloud transmittance. However, linear and exponential parameterizations can only explain 30–50% of the observed variance in computed cloud transmittance factors. We examine the impact of modelled cloud transmittance factors on both solar radiation and ablation rates computed with an enhanced temperature-index model. The melt model performance decreases when modelled radiation is used, the reduction being due to an underestimation of incoming solar radiation on clear-sky days. The model works well under overcast conditions. We also seek alternatives to the use of in situ ground data. However, outputs from an atmospheric model (2.2 km horizontal resolution) do not seem to provide an alternative to the parameterizations of cloud radiative forcing based on observations of air temperature at glacier automatic weather stations. Conversely, the correct definition of overcast conditions is important.


2021 ◽  
Author(s):  
Andreas Baas

<p>Sand transport by wind over granular beds displays dynamic structure and organisation in the form of streamers (aka ‘sand snakes’) that appear, meander and intertwine, and then dissipate as they are advected downwind. These patterns of saltating grain populations are thought to be initiated and controlled by coherent flow structures in the turbulent boundary layer wind that scrape over the bed surface raking up sand into entrainment. Streamer behaviour is thus fundamental to understanding sand transport dynamics, in particular its strong spatio-temporal variability, and is equally relevant to granular transport in other geophysical flows (fluvial, submarine).</p><p>This paper presents findings on streamer dynamics and associated wind turbulence observed in a field experiment on a beach, with measurements from 30Hz video-imagery using Large-Scale Particle Image Velocimetry (LS-PIV), combined with 50Hz wind measurements from 3D sonic anemometry and co-located sand transport rate monitoring using an array of laser particle counters (‘Wenglors’), all taking place over an area of ~10 m<sup>2</sup> and over periods of several minutes. The video imagery was used to identify when and where streamers advected past the sonic anemometer and laser sensors so that relationships could be detected between the passage of turbulence structures in the airflow and the length- and time-scales, propagation speeds, and sand transport intensities of associated streamers. The findings form the basis for a phenomenological model of streamer dynamics under turbulent boundary layer flows that predicts the impact of spatio-temporal variability on local measurement of sand transport.</p>


2012 ◽  
Vol 12 (12) ◽  
pp. 5583-5602 ◽  
Author(s):  
C. Déandreis ◽  
Y. Balkanski ◽  
J. L. Dufresne ◽  
A. Cozic

Abstract. This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate. The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2). The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4) m−3 in our model). The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate simulations. We present other methods that are simpler to implement in a coupled chemistry/climate model and that offer the possibility to assess radiative forcing.


2020 ◽  
Author(s):  
Ting Wang

<p>Natural organic matter (NOM) played an important role in the riverine and global carbon cycle. In order to evaluate the impact of river discharge and anthropogenic activities on the spatio-temporal variability of NOM content and sources in Lancang River, China, a comprehensive study was conducted in two years from the head to the leave-boundary section. As results, the DOC value ranged among 0.91-2.80 mg/L, with sharp decrease in the middle reaches and downstream. While the SOC value significantly enhanced along the water flow, varied from 0.06% to 3.54%. The isotopic composition of organic carbon (δ13C) suggested that predominant contribution of NOM is C3 plants in the upper reach, algae and soil organic matter in the middle reach, and aquatic plants in the downstream. EEM-PARAFAC results proved that NOM in Lancang River is mainly terrestrial organic carbon, while in situ microbial transformed NOM is very low. Moreover, the sharp increase of dissolved CO2 concentration in the lower reaches confirmed the strong respiration of microorganisms due to the higher DO and water temperature, thus resulted in the significantly different fluctuations of DOC and SOC.</p>


2022 ◽  
Vol 22 (1) ◽  
pp. 173-196
Author(s):  
Hélène Bresson ◽  
Annette Rinke ◽  
Mario Mech ◽  
Daniel Reinert ◽  
Vera Schemann ◽  
...  

Abstract. The Arctic is warming faster than the global average and any other region of a similar size. One important factor in this is the poleward atmospheric transport of heat and moisture, which contributes directly to the surface and air warming. In this case study, the atmospheric circulation and spatio-temporal structure of a moisture intrusion event is assessed, which occurred from 5 to 7 June 2017 over the Nordic seas during an intensive measurement campaign over Svalbard. This analysis focuses on high-spatial-resolution simulations with the ICON (ICOsahedral Non-hydrostatic) model which is put in context with coarser-resolution runs as well the ERA5 reanalysis. A variety of observations including passive microwave satellite measurements is used for evaluation. The global operational ICON forecasts from the Deutscher Wetterdienst (DWD) at 13 km horizontal resolution are used to drive high-resolution Limited-Area Mode (LAM) ICON simulations over the Arctic with 6 and 3 km horizontal resolutions. The results show the skilful capacity of the ICON-LAM model to represent the observed spatio-temporal structure of the selected moisture intrusion event and its signature in the temperature, humidity and wind profiles, and surface radiation. In several aspects, the high-resolution simulations offer a higher accuracy than the global simulations and the ERA5 reanalysis when evaluated against observations. One feature where the high-resolution simulations demonstrated an advanced skill is the representation of the changing vertical structure of specific humidity and wind associated with the moisture intrusion passing Ny-Ålesund (western Svalbard); the humidity increase at 1–2 km height topped by a dry layer and the development of a low-level wind jet are best represented by the 3 km simulation. The study also demonstrates that such moisture intrusions can have a strong impact on the radiative and turbulent heat fluxes at the surface. A drastic decrease in downward shortwave radiation by ca. 500 W m−2 as well as an increase in downward longwave radiation by ca. 100 W m−2 within 3 h have been determined. These results highlight the importance of both moisture and clouds associated with this event for the surface energy budget.


2015 ◽  
Vol 54 (7) ◽  
pp. 1556-1568 ◽  
Author(s):  
M. García-Díez ◽  
J. Fernández ◽  
D. San-Martín ◽  
S. Herrera ◽  
J. M. Gutiérrez

AbstractLimited area models (LAMs) are widely used tools to downscale the wind speed forecasts issued by general circulation models. However, only a few studies have systematically analyzed the value added by the LAMs to the coarser-resolution-model wind. The goal of the present work is to investigate how added value depends on the resolution of the driving global model. With this aim, the Weather Research and Forecasting (WRF) Model was used to downscale three different global datasets (GFS, ERA-Interim, and NCEP–NCAR) to a 9-km-resolution grid for a 1-yr period. Model results were compared with a large set of surface observations, including land station and offshore buoy data. Substantial biases were found at this resolution over mountainous terrain, and a slight modification to the subgrid orographic drag parameterization was introduced to alleviate the problem. It was found that, at this resolution, WRF is able to produce significant added value with respect to the NCEP–NCAR reanalysis and ERA-Interim but only a small amount of added value with respect to GFS forecasts. Results suggest that, as model resolution increases, traditional skill scores tend to saturate. Thus, adding value to high-resolution global models becomes significantly more difficult.


2011 ◽  
Vol 11 (8) ◽  
pp. 24313-24364 ◽  
Author(s):  
C. Déandreis ◽  
Y. Balkanski ◽  
J. L. Dufresne ◽  
A. Cozic

Abstract. This paper describes the impact on the sulphate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulphate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for direct and first indirect effects of sulphate. The direct effect responds almost linearly to rapid changes in concentrations whereas, the first indirect effect shows a strong non-linearity. In particular, sulphate temporal variability causes a large modification of the short wave net fluxes at the top of the atmosphere (+0.24 and +0.22 W m−2 for respectively, the present and preindustrial periods that are about 30 % of the total radiative forcing of sulfate). The effect is particularly important in regions with low-level clouds and intermediate sulphate aerosol concentrations (from 0.1 to 0.8 μg (SO4) m−3 in our model). If computation of the aerosol direct radiative forcing is quite straightforward and has few effects; quantifying the first indirect radiative forcing requires first to tackle technical issues. We show that preindustrial sulphate concentrations have to be calculated with the same meteorological trajectory than that used for computing present ones. If this condition is not satisfied, the error on the estimation of the first indirect radiative forcing is of 60 %. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8 % in the first indirect radiative forcing. This change reaches 50 % in the most sensitive regions. However, the reference method is not suited to run long climate simulations. We present other methods that are simpler to implement in a coupled chemistry/climate model and that offer the possibility to assess radiative forcing.


Sign in / Sign up

Export Citation Format

Share Document