scholarly journals Capturing convection essential for projections of climate change in African dust emission

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Luis Garcia-Carreras ◽  
John H. Marsham ◽  
Rachel A. Stratton ◽  
Simon Tucker

AbstractThe summertime Sahara and Sahel are the world’s largest source of airborne mineral dust. Cold-pool outflows from moist convection (‘haboobs’) are a dominant source of summertime uplift but are essentially missing in global models, raising major questions on the reliability of climate projections of dust and dust impacts. Here we use convection-permitting simulations of pan-African climate change, which explicitly capture haboobs, to investigate whether this key limitation of global models affects projections. We show that explicit convection is key to capturing the observed summertime maximum of dust-generating winds, which is missed with parameterised convection. Despite this, future climate changes in dust-generating winds are more sensitive to the effects of explicit convection on the wider meteorology than they are to the haboobs themselves, with model differences in the change in dust-generating winds reaching 60% of current values. The results therefore show the importance of improving convection in climate models for dust projections.


2021 ◽  
Author(s):  
Yuan Qiu ◽  
Jinming Feng ◽  
Zhongwei Yan ◽  
Jun Wang

Abstract Central Asia (CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need to achieve robust projection of regional climate change. In this study, we applied three bias-corrected global climate models (GCMs) to conduct 9km-resolution regional climate simulations in CA for the present (1986–2005) and future (2031–2050) periods. Dynamical downscaling based on multiple bias-corrected GCM outputs obtains numerous added values not only in reproducing the historical climate but also in projecting the climate changes in CA, in comparison to the original GCMs. The regional climate model (RCM) simulations indicate significant warming over CA in the near-term future, with the regional mean increase of annual daily mean temperature (Tmean) in a range of 1.63–2.01℃, relative to the present period. This increase is expected to be higher north of ~ 45°N in each season except summer and the high-elevation areas have a weaker warming signal than the plains through the year. The season with the largest warming rate is not consistent among the RCM simulations, highlighting the necessity of using multiple GCMs as the boundary conditions to give a range of the projected climate changes. A slight increase in annual precipitation is consistently projected in most plain areas, although the changes over few areas are statistically significant. The climate projections presented here serve as a robust scientific basis for assessment of future risk from climate change in CA.



2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>



2013 ◽  
Vol 13 (2) ◽  
pp. 263-277 ◽  
Author(s):  
C. Dobler ◽  
G. Bürger ◽  
J. Stötter

Abstract. The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded Downscaling (XDS) technique and the Long Ashton Research Station Weather Generator (LARS-WG). The XDS model, which is driven by analyzed or simulated large-scale synoptic fields, has been calibrated using ECMWF-interim reanalysis data and local station data. LARS-WG is controlled through stochastic parameters representing local precipitation variability, which are calibrated from station data only. Changes in precipitation mean and variability as simulated by climate models were then used to perturb the parameters of LARS-WG in order to generate climate change scenarios. In our study we use climate simulations based on the A1B emission scenario. The results show that both downscaling models perform well in reproducing observed precipitation extremes. In general, the results demonstrate that the projections are highly variable. The choice of both the GCM and the downscaling method are found to be essential sources of uncertainty. For spring and autumn, a slight tendency toward an increase in the intensity of future precipitation extremes is obtained, as a number of simulations show statistically significant increases in the intensity of 90th and 99th percentiles of precipitation on wet days as well as the 5- and 20-yr return values.



2016 ◽  
Vol 11 (1s) ◽  
Author(s):  
Joseph Leedale ◽  
Adrian M. Tompkins ◽  
Cyril Caminade ◽  
Anne E. Jones ◽  
Grigory Nikulin ◽  
...  

The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.



2018 ◽  
Author(s):  
Alexander J. Roberts ◽  
Margaret J. Woodage ◽  
John H. Marsham ◽  
Ellie J. Highwood ◽  
Claire L. Ryder ◽  
...  

Abstract. Global and regional models have large systematic errors in their modelled dust fields over West Africa. It is well established that cold pool outflows from moist convection (haboobs) can raise over 50 % of the dust over the Sahara and Sahel in summer, but parameterised moist convection tends to give a very poor representation of this in models. Here, we test the hypothesis that an explicit representation of convection improves haboob winds and so may reduce errors in modelled dust fields. The results show that despite varying both grid-spacing and the representation of convection there are only minor changes in dust aerosol optical depth (AOD) and dust mass loading fields between simulations. In all simulations there is an AOD deficit over the observed central Saharan dust maximum and a high bias in AOD along the west coast: both features consistent with many climate (CMIP5) models. Cold pool outflows are present in the explicit simulations and do raise dust. Consistent with this there is an improved diurnal cycle in dust-generating winds with a seasonal peak in evening winds at locations with moist convection that is absent in simulations with parameterised convection. However, the explicit convection does not change the AOD field significantly for several reasons. Firstly, the increased windiness in the evening from haboobs is approximately balanced by a reduction in morning winds associated with the breakdown of the nocturnal low-level jet (LLJ). Secondly, although explicit convection increases the frequency of the strongest winds, these are still weaker than observed, especially close to the observed summertime Saharan dust maximum: this results from the fact that although large mesoscale convective systems (and resultant cold pools) are generated, they have a lower frequency than observed and haboob winds are too weak. Finally, major impacts of the haboobs on winds occur over the Sahel, where, although dust uplift is known to occur in reality, uplift in the simulations is limited by a seasonally constant bare soil fraction in the model, together with soil moisture and clay fractions which are too restrictive of dust emission in seasonally-varying vegetated regions. For future studies, the results demonstrate 1) the improvements in behaviour produced by the explicit representation of convection, 2) the value of simultaneously evaluating both dust and winds and 3) the need to develop parameterisations of the land surface alongside those of dust-generating winds.



2021 ◽  
Vol 14 (10) ◽  
pp. 6177-6195
Author(s):  
Paul R. Halloran ◽  
Jennifer K. McWhorter ◽  
Beatriz Arellano Nava ◽  
Robert Marsh ◽  
William Skirving

Abstract. The marine impacts of climate change on our societies will be largely felt through coastal waters and shelf seas. These impacts involve sectors as diverse as tourism, fisheries and energy production. Projections of future marine climate change come from global models. Modelling at the global scale is required to capture the feedbacks and large-scale transport of physical properties such as heat, which occur within the climate system, but global models currently cannot provide detail in the shelf seas. Version 2 of the regional implementation of the Shelf Sea Physics and Primary Production (S2P3-R v2.0) model bridges the gap between global projections and local shelf-sea impacts. S2P3-R v2.0 is a highly simplified coastal shelf model, computationally efficient enough to be run across the shelf seas of the whole globe. Despite the simplified nature of the model, it can display regional skill comparable to state-of-the-art models, and at the scale of the global (excluding high latitudes) shelf seas it can explain >50 % of the interannual sea surface temperature (SST) variability in ∼60 % of grid cells and >80 % of interannual variability in ∼20 % of grid cells. The model can be run at any resolution for which the input data can be supplied, without expert technical knowledge, and using a modest off-the-shelf computer. The accessibility of S2P3-R v2.0 places it within reach of an array of coastal managers and policy makers, allowing it to be run routinely once set up and evaluated for a region under expert guidance. The computational efficiency and relative scientific simplicity of the tool make it ideally suited to educational applications. S2P3-R v2.0 is set up to be driven directly with output from reanalysis products or daily atmospheric output from climate models such as those which contribute to the sixth phase of the Climate Model Intercomparison Project, making it a valuable tool for semi-dynamical downscaling of climate projections. The updates introduced into version 2.0 of this model are primarily focused around the ability to geographical relocate the model, model usability and speed but also scientific improvements. The value of this model comes from its computational efficiency, which necessitates simplicity. This simplicity leads to several limitations, which are discussed in the context of evaluation at regional and global scales.



2021 ◽  
Author(s):  
Thomas Noël ◽  
Harilaos Loukos ◽  
Dimitri Defrance

A high-resolution climate projections dataset is obtained by statistically downscaling climate projections from the CMIP6 experiment using the ERA5-Land reanalysis from the Copernicus Climate Change Service. This global dataset has a spatial resolution of 0.1°x 0.1°, comprises 5 climate models and includes two surface daily variables at monthly resolution: air temperature and precipitation. Two greenhouse gas emissions scenarios are available: one with mitigation policy (SSP126) and one without mitigation (SSP585). The downscaling method is a Quantile Mapping method (QM) called the Cumulative Distribution Function transform (CDF-t) method that was first used for wind values and is now referenced in dozens of peer-reviewed publications. The data processing includes quality control of metadata according to the climate modelling community standards and value checking for outlier detection.



2020 ◽  
Vol 33 (19) ◽  
pp. 8315-8337 ◽  
Author(s):  
Lawrence S. Jackson ◽  
Declan L. Finney ◽  
Elizabeth J. Kendon ◽  
John H. Marsham ◽  
Douglas J. Parker ◽  
...  

AbstractThe Hadley circulation and tropical rain belt are dominant features of African climate. Moist convection provides ascent within the rain belt, but must be parameterized in climate models, limiting predictions. Here, we use a pan-African convection-permitting model (CPM), alongside a parameterized convection model (PCM), to analyze how explicit convection affects the rain belt under climate change. Regarding changes in mean climate, both models project an increase in total column water (TCW), a widespread increase in rainfall, and slowdown of subtropical descent. Regional climate changes are similar for annual mean rainfall but regional changes of ascent typically strengthen less or weaken more in the CPM. Over a land-only meridional transect of the rain belt, the CPM mean rainfall increases less than in the PCM (5% vs 14%) but mean vertical velocity at 500 hPa weakens more (17% vs 10%). These changes mask more fundamental changes in underlying distributions. The decrease in 3-hourly rain frequency and shift from lighter to heavier rainfall are more pronounced in the CPM and accompanied by a shift from weak to strong updrafts with the enhancement of heavy rainfall largely due to these dynamic changes. The CPM has stronger coupling between intense rainfall and higher TCW. This yields a greater increase in rainfall contribution from events with greater TCW, with more rainfall for a given large-scale ascent, and so favors slowing of that ascent. These findings highlight connections between the convective-scale and larger-scale flows and emphasize that limitations of parameterized convection have major implications for planning adaptation to climate change.



2017 ◽  
Vol 21 (4) ◽  
pp. 2143-2161 ◽  
Author(s):  
Yacouba Yira ◽  
Bernd Diekkrüger ◽  
Gero Steup ◽  
Aymar Yaovi Bossa

Abstract. This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)–global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs–GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM–GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.



2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>



Sign in / Sign up

Export Citation Format

Share Document