scholarly journals Towards a Bulk Approach of Local Interactions of Hydrometeors

2017 ◽  
Author(s):  
Manuel Baumgartner ◽  
Peter Spichtinger

Abstract. Growth of small cloud droplets and ice crystals is dominated by diffusion of water vapour. Usually, Maxwell's approach of growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach on clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer; these effects might have impact on mixed-phase clouds, e.g. in terms of riming efficiencies.

2018 ◽  
Vol 18 (4) ◽  
pp. 2525-2546 ◽  
Author(s):  
Manuel Baumgartner ◽  
Peter Spichtinger

Abstract. The growth of small cloud droplets and ice crystals is dominated by the diffusion of water vapor. Usually, Maxwell's approach to growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach for clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer (e.g., for an initially water supersaturated air parcel within a downdraft). These effects might have an impact on mixed-phase clouds, for example in terms of riming efficiencies.


2020 ◽  
Vol 30 (6) ◽  
pp. 3199-3233 ◽  
Author(s):  
Cristian Guillermo Gebhardt ◽  
Ignacio Romero

Abstract This work proposes and investigates a new model of the rotating rigid body based on the non-twisting frame. Such a frame consists of three mutually orthogonal unit vectors whose rotation rate around one of the three axis remains zero at all times and, thus, is represented by a nonholonomic restriction. Then, the corresponding Lagrange–D’Alembert equations are formulated by employing two descriptions, the first one relying on rotations and a splitting approach, and the second one relying on constrained directors. For vanishing external moments, we prove that the new model possesses conservation laws, i.e., the kinetic energy and two nonholonomic momenta that substantially differ from the holonomic momenta preserved by the standard rigid body model. Additionally, we propose a new specialization of a class of energy–momentum integration schemes that exactly preserves the kinetic energy and the nonholonomic momenta replicating the continuous counterpart. Finally, we present numerical results that show the excellent conservation properties as well as the accuracy for the time-discretized governing equations.


2018 ◽  
Vol 141 (5) ◽  
Author(s):  
Yeshaswini Emmi ◽  
Andreas Fiolitakis ◽  
Manfred Aigner ◽  
Franklin Genin ◽  
Khawar Syed

A new model approach is presented in this work for including convective wall heat losses in the direct quadrature method of moments (DQMoM) approach, which is used here to solve the transport equation of the one-point, one-time joint thermochemical probability density function (PDF). This is of particular interest in the context of designing industrial combustors, where wall heat losses play a crucial role. In the present work, the novel method is derived for the first time and validated against experimental data for the thermal entrance region of a pipe. The impact of varying model-specific boundary conditions is analyzed. It is then used to simulate the turbulent reacting flow of a confined methane jet flame. The simulations are carried out using the DLR in-house computational fluid dynamics code THETA. It is found that the DQMoM approach presented here agrees well with the experimental data and ratifies the use of the new convective wall heat losses model.


2009 ◽  
Vol 23 (28n29) ◽  
pp. 5434-5443 ◽  
Author(s):  
ANTONIO CELANI ◽  
ANDREA MAZZINO ◽  
MARCO TIZZI

A new model to study the effect of turbulence on the cloud droplets in the condensation phase is proposed and its behavior investigated by direct numerical simulations. The model is a generalization of the one by Celani, Mazzino, Tizzi, New J. Phys.10, 075021 (2008), where the droplet feedback on vapor is now explicitly taken into account. Physically, it amounts to considering the fact that when a cloud droplet increases its size, vapor is subtracted from the ambient with the net result of a local reduction in the supersaturation field. It is shown how this effect plays to reduce the broadening of droplet size spectra in the condensation stage and thus to produce results in closer agreement with observations.


2001 ◽  
Vol 04 (04) ◽  
pp. 677-709 ◽  
Author(s):  
TIM DUN ◽  
GEOFF BARTON ◽  
ERIK SCHLÖGL

Alternative approaches to hedging swaptions are explored and tested by simulation. Hedging methods implied by the Black swaption formula are compared with a lognormal forward LIBOR model approach encompassing all the relevant forward rates. The simulation is undertaken within the LIBOR model framework for a range of swaptions and volatility structures. Despite incompatibilities with the model assumptions, the Black method performs equally well as the LIBOR method, yielding very similar distributions for the hedging profit and loss — even at high rehedging frequencies. This result demonstrates the robustness of the Black hedging technique and implies that — being simpler and generally better understood by financial practitioners — it would be the preferred method in practice.


2006 ◽  
Author(s):  
J. M. Jones ◽  
D. K. Walters

This paper presents the initial development and validation of a modified two-equation eddy-viscosity turbulence model for computational fluid dynamics (CFD) prediction of transitional and turbulent flow. The new model is based on a k-ω model framework, making it more easily implemented into existing general-purpose CFD solvers than other recently proposed model forms. The model incorporates inviscid and viscous damping functions for the eddy viscosity, as well as a production damping term, in order to reproduce the appropriate effects of laminar, transitional, and turbulent boundary layer flow. It has been implemented into a commercially available flow solver (FLUENT) and evaluated for simple attached and separated flow conditions, including 2-D flow over a flat plate and a circular cylinder. The results presented show that the new model is able to yield reasonable predictions of transitional flow behavior using a very simple modeling framework, including an appropriate response to freestream turbulence and boundary layer separation.


2000 ◽  
Vol 109 (2) ◽  
pp. 308-320 ◽  
Author(s):  
Norman B. Schmidt ◽  
Julie Storey ◽  
Benjamin D. Greenberg ◽  
Helen T. Santiago ◽  
Qian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document