scholarly journals Merged SAGE II, Ozone_cci and OMPS ozone profiles dataset and evaluation of ozone trends in the stratosphere

Author(s):  
Viktoria F. Sofieva ◽  
Erkki Kyrölä ◽  
Marko Laine ◽  
Johanna Tamminen ◽  
Doug Degenstein ◽  
...  

Abstract. In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of European Space Agency Climate Change Initiative (Ozone_cci) with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and inter-compared; only those datasets, which are in good agreement and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE-CCI-OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE-CCI-OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at mid-latitudes in the upper stratosphere and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s.

2017 ◽  
Vol 17 (20) ◽  
pp. 12533-12552 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Erkki Kyrölä ◽  
Marko Laine ◽  
Johanna Tamminen ◽  
Doug Degenstein ◽  
...  

Abstract. In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci) with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling.


2020 ◽  
Author(s):  
Wouter Dorigo ◽  
Wolfgang Preimesberger ◽  
Adam Pasik ◽  
Alexander Gruber ◽  
Leander Moesinger ◽  
...  

<p>As part of the European Space Agency (ESA) Climate Change Initiative (CCI) a more than 40 year long climate data record (CDR) is produced by systematically combining Level-2 datasets from separate missions. Combining multiple level 2 datasets into a single consistent long-term product combines the advantages of individual missions and allows deriving a harmonised long-term record with optimal spatial and temporal coverage. The current version of ESA CCI Soil Moisture includes a PASSIVE (radiometer-based) dataset covering the period 1978 to 2019, an ACTIVE (scatterometer-based) product covering the period 1991-2019 and a COMBINED product (1978-2019). </p><p>The European Commission’s Copernicus Climate Changes Service (C3S) uses the ESA CCI soil moisture algorithm to produce similar climate data records from near-real-time Level-2 data streams.  These products are continuously extended within 10 days after data acquisition and instantaneously made available through the C3S Climate Data Store. In addition to a daily product, monthly aggregates as well as a dekadal (10-days) products are produced.</p><p>In this presentation we give an overview of the latest developments of the ESA CCI and C3S Soil Moisture datasets, which include the integration of SMAP and various algorithmic updates, and use the datasets to assess the hydrological conditions of 2019 with respect to a 30-year historical baseline.</p><p>The development of the ESA CCI products has been supported by ESA’s Climate Change Initiative for Soil Moisture (Contract No. 4000104814/11/I-NB and 4000112226/14/I-NB). The Copernicus Climate Change Service (C3S) soil moisture product is funded by the Copernicus Climate Change Service implemented by ECMWF through C3S 312b Lot 7 Soil Moisture service.</p>


2020 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Monika Szelag ◽  
Johanna Tamminen ◽  
Erkki Kyrölä ◽  
Doug Degenstein ◽  
...  

Abstract. In this paper, we present the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP) in the stratosphere with a resolved longitudinal structure, which is derived from data by six limb and occultation satellite instruments: GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, OMPS on Suomi-NPP, and MLS on Aura. The merged dataset was generated as a contribution to the European Space Agency Climate Change Initiative Ozone project (Ozone_cci). The period of this merged time series of ozone profiles is from late 2001 until the end of 2018. The monthly mean gridded ozone profile dataset is provided in the altitude range from 10 to 50 km in bins of 10° latitude × 20° longitude. The merging is performed using deseasonalized anomalies. The created MEGRIDOP dataset can be used for analyses, which probe our understanding of stratospheric chemistry and dynamics. To illustrate some possible areas of applications, we created the climatology of ozone profiles with resolved longitudinal structure. We found zonal asymmetry/structures in the climatological ozone profiles at middle and high latitudes associated with the polar vortex. At Northern high latitudes, the amplitude of the seasonal cycle also has a longitudinal dependence. The MEGRIDOP dataset has been also used to evaluate regional vertically-resolved ozone trends in the stratosphere, including polar regions. It is found that stratospheric ozone trends exhibit longitudinal structures at Northern Hemisphere middle and high latitudes, with enhanced trends over Scandinavia and Atlantic region. This agrees well with previous analyses and might be due to changes in dynamic processed related to the Brewer-Dobson circulation.


2021 ◽  
Vol 21 (9) ◽  
pp. 6707-6720
Author(s):  
Viktoria F. Sofieva ◽  
Monika Szeląg ◽  
Johanna Tamminen ◽  
Erkki Kyrölä ◽  
Doug Degenstein ◽  
...  

Abstract. In this paper, we present the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP) in the stratosphere with a resolved longitudinal structure, which is derived from data from six limb and occultation satellite instruments: GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, OMPS on Suomi-NPP, and MLS on Aura. The merged dataset was generated as a contribution to the European Space Agency Climate Change Initiative Ozone project (Ozone_cci). The period of this merged time series of ozone profiles is from late 2001 until the end of 2018. The monthly mean gridded ozone profile dataset is provided in the altitude range from 10 to 50 km in bins of 10∘ latitude × 20∘ longitude. The merging is performed using deseasonalized anomalies. The created MEGRIDOP dataset can be used for analyses that probe our understanding of stratospheric chemistry and dynamics. To illustrate some possible applications, we created a climatology of ozone profiles with resolved longitudinal structure. We found zonal asymmetry in the climatological ozone profiles at middle and high latitudes associated with the polar vortex. At northern high latitudes, the amplitude of the seasonal cycle also has a longitudinal dependence. The MEGRIDOP dataset has also been used to evaluate regional vertically resolved ozone trends in the stratosphere, including the polar regions. It is found that stratospheric ozone trends exhibit longitudinal structures at Northern Hemisphere middle and high latitudes, with enhanced trends over Scandinavia and the Atlantic region. This agrees well with previous analyses and might be due to changes in dynamical processes related to the Brewer–Dobson circulation.


Author(s):  
Ziwei Xiao ◽  
Xuehui Bai ◽  
Mingzhu Zhao ◽  
Kai Luo ◽  
Hua Zhou ◽  
...  

Abstract Shaded coffee systems can mitigate climate change by fixation of atmospheric carbon dioxide (CO2) in soil. Understanding soil organic carbon (SOC) storage and the factors influencing SOC in coffee plantations are necessary for the development of sound land management practices to prevent land degradation and minimize SOC losses. This study was conducted in the main coffee-growing regions of Yunnan; SOC concentrations and storage of shaded and unshaded coffee systems were assessed in the top 40 cm of soil. Relationships between SOC concentration and factors affecting SOC were analysed using multiple linear regression based on the forward and backward stepwise regression method. Factors analysed were soil bulk density (ρb), soil pH, total nitrogen of soil (N), mean annual temperature (MAT), mean annual moisture (MAM), mean annual precipitation (MAP) and elevations (E). Akaike's information criterion (AIC), coefficient of determination (R2), root mean square error (RMSE) and residual sum of squares (RSS) were used to describe the accuracy of multiple linear regression models. Results showed that mean SOC concentration and storage decreased significantly with depth under unshaded coffee systems. Mean SOC concentration and storage were higher in shaded than unshaded coffee systems at 20–40 cm depth. The correlations between SOC concentration and ρb, pH and N were significant. Evidence from the multiple linear regression model showed that soil bulk density (ρb), soil pH, total nitrogen of soil (N) and climatic variables had the greatest impact on soil carbon storage in the coffee system.


2017 ◽  
Vol 17 (20) ◽  
pp. 12269-12302 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Eugene V. Rozanov ◽  
Fiona Tummon ◽  
...  

Abstract. Observations of stratospheric ozone from multiple instruments now span three decades; combining these into composite datasets allows long-term ozone trends to be estimated. Recently, several ozone composites have been published, but trends disagree by latitude and altitude, even between composites built upon the same instrument data. We confirm that the main causes of differences in decadal trend estimates lie in (i) steps in the composite time series when the instrument source data changes and (ii) artificial sub-decadal trends in the underlying instrument data. These artefacts introduce features that can alias with regressors in multiple linear regression (MLR) analysis; both can lead to inaccurate trend estimates. Here, we aim to remove these artefacts using Bayesian methods to infer the underlying ozone time series from a set of composites by building a joint-likelihood function using a Gaussian-mixture density to model outliers introduced by data artefacts, together with a data-driven prior on ozone variability that incorporates knowledge of problems during instrument operation. We apply this Bayesian self-calibration approach to stratospheric ozone in 10° bands from 60° S to 60° N and from 46 to 1 hPa (∼ 21–48 km) for 1985–2012. There are two main outcomes: (i) we independently identify and confirm many of the data problems previously identified, but which remain unaccounted for in existing composites; (ii) we construct an ozone composite, with uncertainties, that is free from most of these problems – we call this the BAyeSian Integrated and Consolidated (BASIC) composite. To analyse the new BASIC composite, we use dynamical linear modelling (DLM), which provides a more robust estimate of long-term changes through Bayesian inference than MLR. BASIC and DLM, together, provide a step forward in improving estimates of decadal trends. Our results indicate a significant recovery of ozone since 1998 in the upper stratosphere, of both northern and southern midlatitudes, in all four composites analysed, and particularly in the BASIC composite. The BASIC results also show no hemispheric difference in the recovery at midlatitudes, in contrast to an apparent feature that is present, but not consistent, in the four composites. Our overall conclusion is that it is possible to effectively combine different ozone composites and account for artefacts and drifts, and that this leads to a clear and significant result that upper stratospheric ozone levels have increased since 1998, following an earlier decline.


2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Elfin Siamena ◽  
Harijanto Sabijono ◽  
Jessy D.L Warongan

The number of taxpayers from year to year increases. But the increase in the number of taxpayers is not offset by taxpayer compliance in paying taxes. The compliance issue becomes an obstacle in maximizing tax revenues. This study aims to analyze the effect of tax sanctions and taxpayer awareness on the compliance of individual taxpayers. The population of this study is determined based on purposive sampling method, the data collected by division of questionnaires in KPP Pratama Manado. The method of research analysis used is multiple linear regression. based on the result of t test, it can be concluded that the tax sanction has positive and significant effect on the taxpayer compliance of the individual, with the value of significance smaller than the significant value (0.001 < 0.05), the consciousness of the taxpayer positively and significantly influence the compliance personal taxpayer, this is indicated by a value of significance smaller than the significant value (0.003 < 0.05).Keywords :Tax sanctions, Taxpayer awareness, Personal taxpayer compliance


1988 ◽  
Vol 123 ◽  
pp. 545-548
Author(s):  
V. Domingo

As a cornerstone of its long term plan for space science research, the European Space Agency (ESA) is developing the Solar Terrestrial Physics Programme that consists of two parts: one, the Solar and Heliospheric Observatory (SOHO) for the study of the solar internal structure and the physics of the solar corona and the solar wind, and another, CLUSTER, a series of four spacecraft flying in formation to study small scale plasma phenomena in several regions of the magnetosphere and in the near Earth solar wind. The feasibility of the missions was demonstrated in Phase A studies carried out by industrial consortia under the supervision of ESA (1,2). According to the current plans an announcement of opportunity calling for instrument proposals will be issued by ESA during the first quarter of 1987. It is foreseen that the spacecraft will be launched by the end of 1994.


2020 ◽  
Vol 20 (11) ◽  
pp. 7035-7047 ◽  
Author(s):  
Monika E. Szeląg ◽  
Viktoria F. Sofieva ◽  
Doug Degenstein ◽  
Chris Roth ◽  
Sean Davis ◽  
...  

Abstract. In this work, we analyze the seasonal dependence of ozone trends in the stratosphere using four long-term merged data sets, SAGE-CCI-OMPS, SAGE-OSIRIS-OMPS, GOZCARDS, and SWOOSH, which provide more than 30 years of monthly zonal mean ozone profiles in the stratosphere. We focus here on trends between 2000 and 2018. All data sets show similar results, although some discrepancies are observed. In the upper stratosphere, the trends are positive throughout all seasons and the majority of latitudes. The largest upper-stratospheric ozone trends are observed during local winter (up to 6 % per decade) and equinox (up to 3 % per decade) at mid-latitudes. In the equatorial region, we find a very strong seasonal dependence of ozone trends at all altitudes: the trends vary from positive to negative, with the sign of transition depending on altitude and season. The trends are negative in the upper-stratospheric winter (−1 % per decade to −2 % per decade) and in the lower-stratospheric spring (−2 % per decade to −4 % per decade), but positive (2 % per decade to 3 % per decade) at 30–35 km in spring, while the opposite pattern is observed in summer. The tropical trends below 25 km are negative and maximize during summer (up to −2 % per decade) and spring (up to −3 % per decade). In the lower mid-latitude stratosphere, our analysis points to a hemispheric asymmetry: during local summers and equinoxes, positive trends are observed in the south (+1 % per decade to +2 % per decade), while negative trends are observed in the north (−1 % per decade to −2 % per decade). We compare the seasonal dependence of ozone trends with available analyses of the seasonal dependence of stratospheric temperature trends. We find that ozone and temperature trends show positive correlation in the dynamically controlled lower stratosphere and negative correlation above 30 km, where photochemistry dominates. Seasonal trend analysis gives information beyond that contained in annual mean trends, which can be helpful in order to better understand the role of dynamical variability in short-term trends and future ozone recovery predictions.


Sign in / Sign up

Export Citation Format

Share Document