scholarly journals Air pollution near arterial roads: An experimental and modelling study

2017 ◽  
Author(s):  
José Ignacio Huertas Cardozo ◽  
Daniel Fernando Prato Sánchez

Abstract. Aiming to advance in the understanding of pollutant dispersion near arterial roads, we measured, simultaneously, meteorological parameters, emission mass rates and TSP, PM10 and PM2.5 concentrations at several locations downwind two roads, located on a flat region without any other source of pollutants. We also implemented on a state of the art commercial CFD software, an air quality model to simulate the dispersion of solid and gas-phase pollutants emitted from arterial roads. Numerical results of long-term averages and daily measurements of particle concentration showed high correlation with experimental measurements (R2 > 0.76). We found that the plots of pollutants concentration vs distance to the road edge describe a unique curve when expressed in terms of non-dimensional numbers and that this curve is well described by a beta function. Profiles of vertical concentration sketch an exponential function at the road edge, an S shape downwind and a flat shape far from the road. Particles exhibit a Rosin Rambler size distribution with average diameter of ~ 7 μm. This distribution remains unaltered downwind from the road, which implies that at any location, PM10 and PM2.5 concentrations are a constant fraction of TPS concentration. Experimental data confirmed this observation. Previous results can be used to determine the size of the area impacted by roads, identify mitigating and adaptive countermeasures, and to improve the accuracy of vehicular emission factors.

2004 ◽  
Vol 35 ◽  
pp. S767-S768
Author(s):  
S. WURZLER ◽  
J. GEIGER ◽  
U. HARTMANN ◽  
V. HOFFMANN ◽  
U. PFEFFER ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Anikó Rakai ◽  
Gergely Kristóf

Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7.


2019 ◽  
Author(s):  
Jianhui Jiang ◽  
Sebnem Aksoyoglu ◽  
Imad El-Haddad ◽  
Giancarlo Ciarelli ◽  
Hugo A. C. Denier van der Gon ◽  
...  

Abstract. Source apportionment of organic aerosols (OA) is of great importance to better understand the health impact and climate effects of particulate matter air pollution. Air quality models act as potential tools to identify OA components and sources at high spatial and temporal resolution, however, they generally underestimate OA concentrations, and comparisons of their outputs with an extended set of measurements are still rare due to the lack of long-term experimental data. In this study, we addressed such challenges at the European level. Using the regional air quality model Comprehensive Air Quality Model with Extensions (CAMx) and a volatility basis set (VBS) scheme which was optimized based on recent chamber experiments with wood burning and diesel vehicle emissions, and contained more source-specific sets compared to previous studies, we calculated the contribution of OA components and defined their sources over a whole-year period (2011). We modelled separately the primary and secondary OA contributions from old and new diesel and gasoline vehicles, biomass burning (mostly residential wood burning and agricultural waste burning excluding wildfires), other anthropogenic sources (mainly shipping, industry and energy production) and biogenic sources. An important feature of this study is that we evaluated the model results with measurements over a longer period than in the previous studies which strengthens our confidence in our modelled source apportionment results. Comparison against positive matrix factorization (PMF) analyses of aerosol mass spectrometric measurements at nine European sites suggested that the modified VBS scheme improved the model performance for total OA as well as the OA components, including hydrocarbon-like (HOA), biomass burning (BBOA) and oxygenated components (OOA). By using the modified VBS scheme, the mean bias of OOA was reduced from −1.3 μg m−3 to −0.4 μg m−3 corresponding to a reduction of mean fractional bias from −45 % to −20 %. The winter OOA simulation, which was largely underestimated in previous studies, was improved by 29 %–42 % among the evaluated sites compared to the default parameterization. Wood burning was the dominant OA source in winter (61 %) while biogenic emissions contributed ~55 % to OA during summer in Europe on average. In both seasons, the other anthropogenic sources comprised the second largest component (9 % in winter and 19 % in summer as domain average), while the average contributions of diesel and gasoline vehicles were rather small (~5 %) except for the metropolitan areas where the highest contribution reached 31 %. The results indicate the need to improve the emission inventory to include currently missing and highly uncertain local emissions, as well as further improvement of VBS parameterization for winter biomass burning. Although this study focused on Europe, it can be applied in any other part of the globe. This study highlights the ability of long-term measurements and source apportionment modelling to validate and improve emission inventories, and identify sources not yet properly included in existing inventories.


2021 ◽  
Author(s):  
Kojiro Shimada ◽  
Masayuki Nohchi ◽  
Koji Maeshima ◽  
Tomonori Uchino ◽  
Yusuke Kobayashi ◽  
...  

Abstract The concentrations of polycyclic aromatic hydrocarbons (PAHs) in aerosol were measured in Shinjuku, which is central Tokyo, Japan, for 10 years from 2007 to 2016. The effects of changes in emission sources and their degradation by reaction with ozone were assessed in this study. There was no significant increasing or decreasing trend of the PAH concentrations during 10 years (P > 0.05). The average selected seven the PAH concentrations (0.88 ng m−3) during 10 years was lower than those in New York and Paris. However, the trend of ozone concentrations is increasing in central Tokyo. This inconsistency raises a question. Did the fact that the ozone concentration was higher than the PAH concentrations promote PAH degradation? To apportion the PAH sources, we used PAH concentration profiles and positive matrix factorization analysis. The contribution of vehicle emissions to the PAHs ranged from 40 to 80 %. Ozone concentrations increased by 3.70 %/year during 10 years. The theoretical degradation rates of PAHs by ozone, which were calculated using a pseudo-first-order rate equation, suggested that the lifetimes of benzo[a]pyrene (BaP) decreased by 1 min from 2007 to 2016. We investigated the aging of BaP using the profile of the isomer ratios. We found that the aging of BaP at the urban and roadside sites were nearly identical indicating aging regardless of the season. Although the decomposition of BaP is promoted by the photochemical oxidation reaction, this result suggests that a certain threshold value exists as the degree of the decomposition. This degradation of PAH can improve chemical loss processes in air quality model.


2015 ◽  
Vol 15 (21) ◽  
pp. 12385-12396 ◽  
Author(s):  
T. Nieminen ◽  
T. Yli-Juuti ◽  
H. E. Manninen ◽  
T. Petäjä ◽  
V.-M. Kerminen ◽  
...  

Abstract. New particle formation (NPF) occurs frequently in the global atmosphere. During recent years, detailed laboratory experiments combined with intensive field observations in different locations have provided insights into the vapours responsible for the initial formation of particles and their subsequent growth. In this regard, the importance of sulfuric acid, stabilizing bases such as ammonia and amines as well as extremely low volatile organics, have been proposed. The instrumentation to observe freshly formed aerosol particles has developed to a stage where the instruments can be implemented as part of airborne platforms, such as aircrafts or a Zeppelin-type airship. Flight measurements are technically more demanding and require a greater detail of planning than field studies at the ground level. The high cost of flight hours, limited time available during a single research flight for the measurements, and different instrument payloads in Zeppelin airship for various flight missions demanded an analysis tool that would forecast whether or not there is a good chance for an NPF event. Here we present a methodology to forecast NPF event probability at the SMEAR II site in Hyytiälä, Finland. This methodology was used to optimize flight hours during the PEGASOS (Pan-European Gas Aerosol Climate Interaction Study)–Zeppelin Northern mission in May–June 2013. Based on the existing knowledge, we derived a method for estimating the nucleation probability that utilizes forecast air mass trajectories, weather forecasts, and air quality model predictions. With the forecast tool we were able to predict the occurrence of NPF events for the next day with more than 90 % success rate (10 out of 11 NPF event days correctly predicted). To our knowledge, no similar forecasts of NPF occurrence have been developed for other sites. This method of forecasting NPF occurrence could be applied also at other locations, provided that long-term observations of conditions favouring particle formation are available.


2014 ◽  
Vol 692 ◽  
pp. 13-21 ◽  
Author(s):  
Chien Hung Chen ◽  
Ken Hui Chang ◽  
Tu Fu Chen

To clarify the influence of air pollutants emitted from East Asia on the ozone air quality in Taiwan, this study performs a long-term simulation result for 4 months using Taiwan Air Quality Model. Influence from the current (2007) and future (2020) East Asian emissions on the ozone concentration in Taiwan were simulated. The date ranges simulated were February, May, August, and October of 2007, representing the seasons of winter, spring, summer, and autumn. Influence from transboundary transport on Taiwan was assessed based on simulations of these 4 months. The influence of transboundary transport on the monthly average of daily peak ozone concentrations in Taiwan is 15.5 ppb. Worst case scenarios in 2020 will contribute an additional 3.7 ppb. If the size of ozone pollution area (≧120 ppb) is considered, transboundary transport contributed to 72 % of the polluted area in 2007; the ozone pollution area in the worst case scenario in 2020 will further increase by 47 % from 2007 levels.


Sign in / Sign up

Export Citation Format

Share Document