scholarly journals Sources of PM<sub>2.5</sub> carbonaceous aerosol in Riyadh, Saudi Arabia

2017 ◽  
Author(s):  
Qijing Bian ◽  
Badr Alharbi ◽  
Mohammed M. Sharee ◽  
Tahir Husai ◽  
Mohammad J. Pasha ◽  
...  

Abstract. Knowledge of the sources of carbonaceous aerosol affecting air quality in Riyadh, Saudi Arabia is limited, but needed for the development of pollution control strategies. We conducted sampling of PM2.5 from April to September, 2012 at various sites in the city, and used a thermo-optical semi-continuous method to quantify the organic carbon (OC) and elemental carbon (EC) concentrations. The average OC and EC concentrations were 4.7 ± 4.4 and 2.1 ± 2.5 μg  m

2018 ◽  
Vol 18 (6) ◽  
pp. 3969-3985 ◽  
Author(s):  
Qijing Bian ◽  
Badr Alharbi ◽  
Mohammed M. Shareef ◽  
Tahir Husain ◽  
Mohammad J. Pasha ◽  
...  

Abstract. Knowledge of the sources of carbonaceous aerosol affecting air quality in Riyadh, Saudi Arabia, is limited but needed for the development of pollution control strategies. We conducted sampling of PM2.5 from April to September 2012 at various sites in the city and used a thermo-optical semi-continuous method to quantify the organic carbon (OC) and elemental carbon (EC) concentrations. The average OC and EC concentrations were 4.7 ± 4.4 and 2.1 ± 2.5 µg m−3, respectively, during this period. Both OC and EC concentrations had strong diurnal variations, with peaks at 06:00–08:00 LT and 20:00–22:00 LT, attributed to the combined effect of increased vehicle emissions during rush hour and the shallow boundary layer in the early morning and at night. This finding suggested a significant influence of local vehicular emissions on OC and EC. The OC ∕ EC ratio in primary emissions was estimated to be 1.01, close to documented values for diesel emissions. Estimated primary organic carbon (POC) and secondary organic carbon (SOC) concentrations were comparable, with average concentrations of 2.0 ± 2.4 and 2.8 ± 3.4 µg m−3, respectively. We also collected 24 h samples of PM10 onto quartz microfiber filters and analyzed these for an array of metals by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Total OC was correlated with Ca (R2 of 0.63), suggesting that OC precursors and Ca may have similar sources, and the possibility that they underwent similar atmospheric processing. In addition to a ubiquitous dust source, Ca is emitted during desalting processes in the numerous refineries in the region and from cement kilns, suggesting these sources may also contribute to observed OC concentrations in Riyadh. Concentration weighted trajectory (CWT) analysis showed that high OC and EC concentrations were associated with air masses arriving from the Persian Gulf and the region around Baghdad, locations with high densities of oil fields and refineries as well as a large Saudi Arabian cement plant. We further applied positive matrix factorization to the aligned dataset of EC, OC, and metal concentrations (Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and V). Three factors were derived and were proposed to be associated with oil combustion, industrial emissions (Pb based), and a combined source from oil fields, cement production, and local vehicular emissions. The dominant OC and EC source was the combined source, contributing 3.9 µg m−3 (80 %) to observed OC and 1.9 µg m−3 (92 %) to observed EC.


2007 ◽  
Vol 7 (9) ◽  
pp. 2277-2285 ◽  
Author(s):  
N. A. Marley ◽  
J. S. Gaffney ◽  
R. Ramos-Villegas ◽  
B. Cárdenas González

Abstract. The concentrations of peroxyacetyl nitrate (PAN) in ambient air can be a good indicator of air quality and the effectiveness of control strategies for reducing ozone levels in urban areas. As PAN is formed by the oxidation of reactive hydrocarbons in the presence of nitrogen dioxide (NO2), it is a direct measure of the peroxyacyl radical levels produced from reactive organic emissions in the urban air shed. Carbon soot, known as black carbon (BC) or elemental carbon (EC), is a primary atmospheric aerosol species and is a good indicator of the levels of combustion emissions, particularly from diesel engines, in major cities. Mexico City is the second largest megacity in the world and has long suffered from poor air quality. Reported here are atmospheric measurements of PAN and BC obtained in Mexico City during the Mexico Megacity 2003 field study. These results are compared with measurements obtained earlier during the Investigación sobre Materia Particulada y Deterioro Atmosférico – Aerosol and Visibility Research (IMADA-AVER) campaign in 1997 to obtain an estimate of the changes in emissions in Mexico City and the effectiveness of control strategies adopted during that time. Concentrations of PAN in 1997 reached a maximum of 34 ppb with an average daily maximum of 15 ppb. The PAN levels recorded in 2003 were quite different, with an average daily maximum of 3 ppb. This dramatic reduction in PAN levels observed in 2003 indicate that reactive hydrocarbon emissions have been reduced in the city due to controls on olefins in liquefied petroleum gas (LPG) and also due to the significant number of newer vehicles with catalytic converters that have replaced older higher emission vehicles. In contrast, black/elemental carbon levels were similar in 1997 and 2003 indicating little improvement likely due to the lack of controls on diesel vehicles in the city. Thus, while air quality and ozone production have improved, Mexico City and other megacities continue to be a major source of black carbon aerosols, which can be an important species in determining regional radiative balance and climate.


2007 ◽  
Vol 7 (1) ◽  
pp. 1421-1448 ◽  
Author(s):  
N. A. Marley ◽  
J. S. Gaffney ◽  
R. Ramos-Villegas ◽  
B. Cárdenas González

Abstract. Peroxyacetyl nitrate (PAN) concentrations in ambient air can be a good indicator of air quality and the effectiveness of control strategies for reducing ozone levels in urban areas. As PAN is formed by the oxidation of reactive hydrocarbons in the presence of nitrogen dioxide (NO2), it is a direct measure of the peroxyacyl radical levels produced from reactive organic emissions in the urban air shed. Carbon soot, known as black carbon or elemental carbon, is a primary atmospheric aerosol species and is a good indicator of the levels of combustion emissions, particularly from diesel engines, in major cities. Mexico City is the second largest megacity in the world and has long suffered from poor air quality. Reported here are atmospheric measurements of PAN and black carbon obtained in Mexico City during the Mexico Megacity 2003 field study. These results are compared with measurements obtained earlier during the Investigación sobre Materia Particulada y Deterioro Atmosférico – Aerosol and Visibility Research (IMADA-AVER) campaign in 1997 to obtain an estimate of the changes in emissions in Mexico City and the effectiveness of control strategies adopted during that time. Concentrations of PAN in 1997 reached a maximum of 34 ppb with an average daily maximum of 15 ppb. The PAN levels recorded in 2003 were quite different, with an average daily maximum of 3 ppb. This dramatic reduction in PAN levels observed in 2003 indicate that reactive hydrocarbon emissions have been reduced in the city due to controls on olefins in liquefied petroleum gas (LPG) and also due to the significant number of newer vehicles with catalytic converters that have replaced older higher emission vehicles. In contrast, black/elemental carbon levels were similar in 1997 and 2003 indicating little improvement likely due to the lack of controls on diesel vehicles in the city. Thus, while air quality and ozone production has improved, Mexico City and other megacities continue to be a major source of black carbon aerosols, which can be an important species in determining regional radiative balance and climate.


2011 ◽  
Vol 11 (12) ◽  
pp. 5685-5700 ◽  
Author(s):  
S. Gilardoni ◽  
E. Vignati ◽  
F. Cavalli ◽  
J. P. Putaud ◽  
B. R. Larsen ◽  
...  

Abstract. The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January–December 2007. Carbonaceous aerosol was described as the sum of 8 source components: primary (1) and secondary (2) biomass burning organic carbon, biomass burning elemental carbon (3), primary (4) and secondary (5) fossil organic carbon, fossil fuel burning elemental carbon (6), primary (7) and secondary (8) biogenic organic carbon. The mass concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan), micro tracers (arabitol and mannitol), and 14C measurements. This was the first time that 14C measurements covered a full annual cycle with daily resolution. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the reference fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC) method accounting for the variability of OC and EC emission factors, the uncertainty of reference fractions of modern carbon, and the measurement uncertainty. During winter, biomass burning composed 64 % (±15 %) of the total carbon (TC) concentration, while in summer secondary biogenic OC accounted for 50 % (±16 %) of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil sources represented 27 % (±16 %) and 41 % (±26 %) of TC in winter and summer, respectively. The contribution of secondary organic aerosol (SOA) to the organic mass (OM) was significant during the entire year. SOA accounted for 30 % (±16 %) and 85 % (±12 %) of OM during winter and summer, respectively. While the summer SOA was dominated by biogenic sources, winter SOA was mainly due to biomass burning and fossil sources. This indicates that the oxidation of semi-volatile and intermediate volatility organic compounds co-emitted with primary organics is a significant source of SOA, as suggested by recent model results and Aerosol Mass Spectrometer measurements. Comparison with previous global model simulations, indicates a strong underestimate of wintertime primary aerosol emissions in this region. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential Source Contribution Function method to identify potential source regions.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 451 ◽  
Author(s):  
Carmina Sirignano ◽  
Angelo Riccio ◽  
Elena Chianese ◽  
Haiyan Ni ◽  
Katrin Zenker ◽  
...  

A better knowledge of the local and regional sources of the atmospheric particulate matter provides policy makers with the proper awareness when acting to improve air quality, in order to protect public health. A source apportionment study of the carbonaceous aerosol in Naples (Italy) is presented here, in order to improve this understanding in a vulnerable urban area. The aim of this study is quantifying directly fossil and non-fossil contributions to carbonaceous aerosol, by means of radiocarbon measurements. This is the first time that such an approach is implemented in this area. Fine particles with diameter ≤ 2.5 µm (PM2.5) were collected daily on top of a building in the city center, from November 2016 until January 2017. The carbonaceous aerosol was separated into organic carbon (OC) and elemental carbon (EC), by a two-step thermal desorption method. Subsequent radiocarbon analysis enabled the partitioning of the major sources of carbonaceous aerosol into fossil and non-fossil ones by applying radiocarbon isotopic mass balance. The PM2.5 concentration was on average 29 ± 3 µg⁄m3 (mean ± standard error; n = 18), with a maximum of 68.6 ± 0.7 µg⁄m3 on a day when air masses back-trajectories suggest a local origin and stagnant airflow conditions in the region. The carbonaceous component accounts for roughly half of the PM2.5 mass. Fossil fuel emissions are a minor source of OC (23%), but the dominant source of EC (66%), which is directly emitted during combustion processes. However, overall only 30% of the total carbon is of fossil origin, accounting for 14% of PM2.5 mass. Surprisingly, a comparable contribution is due to primary biomass burning carbon, which accounts in total for 15% of PM2.5 mass. Traffic pollution, the main cause of fossil fuel emissions in urban areas, is a significant, but not the predominant source of carbonaceous particle concentration. These findings support the conclusion of a predominant contribution from non-fossil sources to the carbon in airborne particulate matter, which policy makers should take into account when planning mitigation strategies to improve urban air quality.


2011 ◽  
Vol 11 (22) ◽  
pp. 11387-11400 ◽  
Author(s):  
J. Genberg ◽  
M. Hyder ◽  
K. Stenström ◽  
R. Bergström ◽  
D. Simpson ◽  
...  

Abstract. A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (80%), which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (32%) and fossil fuel combustion (28%) were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP MSC-W chemical transport model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 2.2 compared to the measurements.


2011 ◽  
Vol 11 (5) ◽  
pp. 13575-13616 ◽  
Author(s):  
J. Genberg ◽  
M. Hyder ◽  
K. Stenström ◽  
R. Bergström ◽  
D. Simpson ◽  
...  

Abstract. A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (82 %), which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (38 %) and fossil fuel combustion (33 %) were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 8.2 compared to the measurements.


2021 ◽  
Vol 13 (2) ◽  
pp. 121
Author(s):  
Belathea Chastine Hutauruk ◽  
Dwi Nowo Martono ◽  
Ahyahudin Sodri

Introduction: Coal consumption for electrical energy at Steam Power Plant increase often with economic and population growth. Burning coal produces harmful pollutants such as PM2.5 and SO2 affecting public health problems and decline in social and economic conditions. Therefore, implement the strategies are needed to reduce risks and long-term impacts on the environment. The research aimed to analyze the risk and impact of air pollutants exposure and develop control strategies. Methods: This study used the methods of environmental health risk analysis, analysis of the level of understanding and perception, cost of illness analysis, and Strength, Weakness, Opportunities, and Threats analysis, Data obtained by survey, interviews using questionnaire instrument to 293 respondents, five experts to determine risk control strategies and the secondary data from Environmental Agency of Bekasi Regency. Results and Discussion: The result showed that most risk is 13-55 years old, and people who live less than two square kilometres from the power plant. The level of public understanding and perception resulted in moderate criteria. The average cost of illness is 14.51% of the average monthly income of each person. The recommendation strategies are implemented regulations of power plant location, providing guidelines for environmental controlling, air quality control regularly, tightening air quality standards, prioritizing air pollution control budgets, providing green space, implementing clean energy and renewable energy, and building capacity air quality control. Conclusion: The production of electrical energy on Steam Power Plant had an air pollution impact such as health problems, decreased income, and social disruption. Air pollution control includes structural and nonstructural strategies from internal and external Steam Power Plant to provide environmentally friendly energy production for the communities.


Sign in / Sign up

Export Citation Format

Share Document