scholarly journals Sources of PM<sub>2.5</sub> carbonaceous aerosol in Riyadh, Saudi Arabia

2018 ◽  
Vol 18 (6) ◽  
pp. 3969-3985 ◽  
Author(s):  
Qijing Bian ◽  
Badr Alharbi ◽  
Mohammed M. Shareef ◽  
Tahir Husain ◽  
Mohammad J. Pasha ◽  
...  

Abstract. Knowledge of the sources of carbonaceous aerosol affecting air quality in Riyadh, Saudi Arabia, is limited but needed for the development of pollution control strategies. We conducted sampling of PM2.5 from April to September 2012 at various sites in the city and used a thermo-optical semi-continuous method to quantify the organic carbon (OC) and elemental carbon (EC) concentrations. The average OC and EC concentrations were 4.7 ± 4.4 and 2.1 ± 2.5 µg m−3, respectively, during this period. Both OC and EC concentrations had strong diurnal variations, with peaks at 06:00–08:00 LT and 20:00–22:00 LT, attributed to the combined effect of increased vehicle emissions during rush hour and the shallow boundary layer in the early morning and at night. This finding suggested a significant influence of local vehicular emissions on OC and EC. The OC ∕ EC ratio in primary emissions was estimated to be 1.01, close to documented values for diesel emissions. Estimated primary organic carbon (POC) and secondary organic carbon (SOC) concentrations were comparable, with average concentrations of 2.0 ± 2.4 and 2.8 ± 3.4 µg m−3, respectively. We also collected 24 h samples of PM10 onto quartz microfiber filters and analyzed these for an array of metals by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Total OC was correlated with Ca (R2 of 0.63), suggesting that OC precursors and Ca may have similar sources, and the possibility that they underwent similar atmospheric processing. In addition to a ubiquitous dust source, Ca is emitted during desalting processes in the numerous refineries in the region and from cement kilns, suggesting these sources may also contribute to observed OC concentrations in Riyadh. Concentration weighted trajectory (CWT) analysis showed that high OC and EC concentrations were associated with air masses arriving from the Persian Gulf and the region around Baghdad, locations with high densities of oil fields and refineries as well as a large Saudi Arabian cement plant. We further applied positive matrix factorization to the aligned dataset of EC, OC, and metal concentrations (Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and V). Three factors were derived and were proposed to be associated with oil combustion, industrial emissions (Pb based), and a combined source from oil fields, cement production, and local vehicular emissions. The dominant OC and EC source was the combined source, contributing 3.9 µg m−3 (80 %) to observed OC and 1.9 µg m−3 (92 %) to observed EC.

2017 ◽  
Author(s):  
Qijing Bian ◽  
Badr Alharbi ◽  
Mohammed M. Sharee ◽  
Tahir Husai ◽  
Mohammad J. Pasha ◽  
...  

Abstract. Knowledge of the sources of carbonaceous aerosol affecting air quality in Riyadh, Saudi Arabia is limited, but needed for the development of pollution control strategies. We conducted sampling of PM2.5 from April to September, 2012 at various sites in the city, and used a thermo-optical semi-continuous method to quantify the organic carbon (OC) and elemental carbon (EC) concentrations. The average OC and EC concentrations were 4.7 ± 4.4 and 2.1 ± 2.5 μg  m


2008 ◽  
Vol 8 (16) ◽  
pp. 4499-4516 ◽  
Author(s):  
R. C. Moffet ◽  
B. de Foy ◽  
L. T. Molina ◽  
M. J. Molina ◽  
K. A. Prather

Abstract. Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS) were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006). Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC) mixed with nitrate and sulfate, elemental carbon (EC), nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42%) which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m.) showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC) particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m.) showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m.), weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m.), resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh biomass particles. The highest wind speeds were correlated with the highest number fraction of fresh biomass particles (up to 76% of the submicron number fraction) when winds were coming directly from fires that were located south and southeast of the city based on MODIS fire count data. This study provides a unique clock of hourly changes in single particle mixing state and sources as a function of meteorology in Mexico City. These new findings indicate that biomass burning and industrial emissions can make significant contributions to primary particle loadings in Mexico City that are strongly coupled with local meteorology.


2011 ◽  
Vol 11 (7) ◽  
pp. 21601-21629
Author(s):  
W. W. Hu ◽  
M. Hu ◽  
Z. Q. Deng ◽  
R. Xiao ◽  
Y. Kondo ◽  
...  

Abstract. Both organic carbon (OC) and elemental carbon (EC) were measured at a rural site, Back Garden (BG), 50km northwest of the Guangzhou City, by using a semi-continuous thermal-optical analyzer during PRIDE-PRD 2006 summer intensive campaign. Together with the online EC/OC instrument, multiple instruments were also employed here which provided a good opportunity to check data quality. The regressions between the mass of organic aerosol (OM) and OC, as well as OC and water soluble organic carbon (WSOC) imply reliability of the data measured in this campaign. The average OC concentrations in fine particle for three typical periods during the campaign (local emission influence, typhoon and participation, normal days) were 28.1 μg C m−3, 4.0 μg C m−3 and 5.7 μg C m−3, respectively, and EC were 11.6 μg C m−3, 1.8 μg C m−3, and 3.3 μg C m−3 orderly. Diurnal variations of EC and OC showed that there were two peaks for EC and OC concentrations, i.e. at night and early morning, which were probably caused by the primary emission accumulation when the boundary layer was shallow. Compare to the constant diurnal enhancement ratios of primary EC, the enhancement ratio of OC (OC versus (CO-CObackground)) remained in a relative high level in the afternoon with a similar diurnal variation to oxygenated organic aerosol (OOA), indicating the strong photochemical formation of OC. The traditional EC tracer method was modified to estimate the secondary organic carbon (SOC) formation, which shows that the average SOC concentration in BG site was about 2.0 ± 2.3 μg C m−3.The SOC fraction in OC reached up to 80 % with the average of 47 %. Good correlations between estimated SOC versus measured OOA or WSOC, and estimated POC versus measured hydrocarbon-like organic aerosol (HOA) also proved the reliable results by the modified EC tracer method in this paper.


2012 ◽  
Vol 12 (4) ◽  
pp. 1811-1822 ◽  
Author(s):  
W. W. Hu ◽  
M. Hu ◽  
Z. Q. Deng ◽  
R. Xiao ◽  
Y. Kondo ◽  
...  

Abstract. Both organic carbon (OC) and elemental carbon (EC) were measured during PRIDE-PRD 2006 summer campaign by using a semi-continuous thermal-optical carbon analyzer at a rural site, Back Garden (BG), which is located 50 km to the northwest of Guangzhou City. Together with the online EC/OC analyzer, various kinds of instruments related to aerosol chemical properties were employed here, which provided a good opportunity to check data quality. The concentrations of OC correlated well with the mass of organic matter (OM) and water soluble organic carbon (WSOC), implying the reliability of the data measured in this campaign. The average OC concentrations in fine particle for three typical periods during the campaign (local emission influence, typhoon and precipitation and normal days) were 28.1 μgC m−3, 4.0 μgC m−3 and 5.7 μgC m−3, respectively; and EC were 11.6 μgC m−3, 1.8 μgC m−3, and 3.3 μgC m−3, respectively. The diurnal patterns of EC and OC during the campaign were higher at night and in early morning than daytime, which was probably caused by the primary emission and accumulation in the occurrence of low boundary layer. Compared with the constant diurnal enhancement ratios of EC, the enhancement ratio of OC (OC versus (CO-CObackground)) kept in a relative high level in the afternoon, with a similar diurnal profile to oxygenated organic aerosol (OOA), due to the strong photochemical formation of OC. Here, a modified EC tracer method was used to estimate the formation of secondary organic carbon (SOC). These results showed that the average SOC concentration (normal days) at BG site was about 2.0 ± 2.3 μgC m−3, and the SOC fraction in OC could reach up to 80% with the average of 47%. The modified approach in this study proved to be effective and reliable for SOC estimation based on good correlations between estimated SOC versus OOA or WSOC, and estimated POC versus hydrocarbon-like organic aerosol (HOA).


2009 ◽  
Vol 2 (3) ◽  
pp. 213-234 ◽  
Author(s):  
Mohammed J. Al-Mahmoud ◽  
Mesbah H. Khalil ◽  
Adel R. Moustafa

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


2019 ◽  
Vol 12 (8) ◽  
pp. 4543-4560 ◽  
Author(s):  
Tak W. Chan ◽  
Lin Huang ◽  
Kulbir Banwait ◽  
Wendy Zhang ◽  
Darrell Ernst ◽  
...  

Abstract. Carbonaceous aerosol is a major contributor to the total aerosol load and being monitored by diverse measurement approaches. Here, 10 years (2005–2015) of continuous carbonaceous aerosol measurements collected at the Centre of Atmospheric Research Experiments (CARE) in Egbert, Ontario, Canada, on quartz-fiber filters by three independent networks (Interagency Monitoring of Protected Visual Environments, IMPROVE; Canadian Air and Precipitation Monitoring Network, CAPMoN; and Canadian Aerosol Baseline Measurement, CABM) were compared. Specifically, the study evaluated how differences in sample collection and analysis affected the concentrations of total carbon (TC), organic carbon (OC), and elemental carbon (EC). Results show that different carbonaceous fractions measured by various networks were consistent and comparable in general among the three networks over the 10-year period, even with different sampling systems/frequencies, analytical protocols, and artifact corrections. The CAPMoN TC, OC, and EC obtained from the DRI model 2001 thermal–optical carbon analyzer following the IMPROVE-TOR protocol (denoted as DRI-TOR) method were lower than those determined from the IMPROVE_A TOR method by 17 %, 14 %, and 18 %, respectively. When using transmittance for charring correction, the corresponding carbonaceous fractions obtained from the Sunset-TOT were lower by as much as 30 %, 15 %, and 75 %, respectively. In comparison, the CABM TC, OC, and EC obtained from a thermal method, EnCan-Total-900 (ECT9), were higher than the corresponding fractions from IMPROVE_A TOR by 20 %–30 %, 0 %–15 %, and 60 %–80 %, respectively. Ambient OC and EC concentrations were found to increase when ambient temperature exceeded 10 ∘C. These increased ambient concentrations of OC during summer were possibly attributed to secondary organic aerosol (SOA) formation and forest fire emissions, while elevated EC concentrations were potentially influenced by forest fire emissions and increased vehicle emissions. Results also show that the pyrolyzed organic carbon (POC) obtained from the ECT9 protocol could provide additional information on SOA although more research is still needed.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Eid I. Brima

In terms of nutrition, dates are an important commodity because they are a source of carbohydrates and minerals. Saudi Arabia is the second largest producer of dates worldwide. Khalas is the tenth most popular date type in the Kingdom of Saudi Arabia (KSA), but only limited information related to the levels of essential nutrients in Khalas dates is available. The concentrations of Mn, Cu, Zn, and Se were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The average concentrations in wet weight were as follows (mg/kg): Mn (2.90 ± 0.54), Cu (1.78 ± 0.64), Zn (1.72 ± 0.42), and Se (0.10 ± 0.06). The calculated intakes (μg/kg bw day) per 100 g dates for each element were as follows: Mn (4.14), Cu (2.54), Zn (2.46), and Se (0.14), which represent 0.14%, 0.51%, 0.25%, and 0.2%, respectively, of the provisional maximum tolerable daily intake (PMTDI) recommended by the EFSA/WHO. It was found that levels of the analysed essential elements in up to 100 g of Khalas dates do not exceed the level set by the EFSA/WHO.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Majed Alrobaian ◽  
Hassan Arida

Epidemiological studies on the heavy and toxic metal content in the human blood and hair of some smokers from Saudi Arabia were carried out by modern analytical techniques. The levels of some selected heavy and toxic metals (e.g.; Hg, Pb, Cd, As, Se, Mn, Zn, Ni, and Cr) were determined using inductively coupled plasma-atomic emission spectrometer (ICP-AES). Prior to the analysis, the blood and hair samples of Saudi Arabia smokers were collected, treated, and digested by microwave digestion system. The number of cigarettes per day as well as the smoking period was taken in consideration in this study. The tested elements concentrations in the investigated smoker blood and hair samples were compared with those obtained from some nonsmoking control samples. The samples were collected from the psychiatric hospital in Taif city after issuing the ethical committee license in this regard. The results obtained from this study represent a very important guide for the antismoking organizations. The assessment of some side effects of the smoking in such studies presents vital challenge for the social antismoking authorities and the stakeholder governments to attain the sustainable investment for their people.


Sign in / Sign up

Export Citation Format

Share Document