scholarly journals Determination and significance of upper-tropospheric humidity

2018 ◽  
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. We present a novel retrieval for upper-tropospheric humidity (UTH) from HIRS channel 12 radiances that successfully bridges the wavelength change from 6.7 to 6.5 µm that occurred from HIRS 2 on NOAA 14 to HIRS 3 on NOAA 15. The jump in average brightness temperature (T12) that this change caused (about −7 K) could be fixed with a statistical intercalibration method (Shi and Bates, 2011). Unfortunately, the retrieval of UTHi based on the intercalibrated data was not satisfying at the high tail of the distribution of UTHi. Attempts to construct a better intercalibration in the low T12 range (equivalent to the high UTHi range) were either not successful (Gierens et al., 2018) or required additional statistically determined correctionsto the measured brightness temperatures (Gierens and Eleftheratos, 2017). The new method presented here is based on the original one (Soden and Bretherton, 1993; Stephens et al., 1996; Jackson and Bates, 2001), but it extends linearisations in the formulation of water vapour saturation pressure and in the temperature-dependence of the Planck function to second order. To achieve the second-order formulation we derive the retrieval from the beginning, and we find that the most influential ingredient is the use of different optical constants for the two involved channel wavelengths (6.7 and 6.5 µm). The result of adapting the optical constant is an almost perfect match between UTH data measured by HIRS 2 on NOAA 14 and HIRS 3 on NOAA 15 on 1004 common days of operation. The method is applied to both UTH and UTHi, the upper-tropospheric humidity with respect to ice. For each case retrieval coefficients are derived. We present a number of test applications, e.g. on computed brightness temperatures based on high-resolution radiosonde profiles, on the brightness temperatures measured by the satellites on the mentioned 1004 common days of operation. Further we present time series of the occurrence frequency of high UTHi cases and we show the overall probability distribution of UTHi. The two latter applications expose clear indications of moistening of the upper troposphere over the last 35 years. Finally, we discuss the significance of UTH. We state that UTH algorithms cannot be judged for their correctness or incorrectness, since there is no true UTH. Instead, UTH algorithms should fulfil a number of usefulness-postulates, that we suggest and discuss. In the course of this discussion an alternative method to estimate the weighting function is presented.

2019 ◽  
Vol 19 (6) ◽  
pp. 3733-3746
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. We present a novel retrieval for upper-tropospheric humidity (UTH) from High-resolution Infrared Radiation Sounder (HIRS) channel 12 radiances that successfully bridges the wavelength change from 6.7 to 6.5 µm that occurred from HIRS/2 on National Oceanic and Atmospheric Administration satellite NOAA-14 to HIRS/3 on satellite NOAA-15. The jump in average brightness temperature (in the water vapour channel; T12) that this change had caused (about −7 K) could be fixed with a statistical inter-calibration method (Shi and Bates, 2011). Unfortunately, the retrieval of UTHi (upper-tropospheric humidity with respect to ice) based on the inter-calibrated data was not satisfying at the high tail of the distribution of UTHi. Attempts to construct a better inter-calibration in the low T12 range (equivalent to the high UTHi range) were either not successful (Gierens et al., 2018) or required additional statistically determined corrections to the measured brightness temperatures (Gierens and Eleftheratos, 2017). The new method presented here is based on the original one (Soden and Bretherton, 1993; Stephens et al., 1996; Jackson and Bates, 2001), but it extends linearisations in the formulation of water vapour saturation pressure and in the temperature dependence of the Planck function to second order. To achieve the second-order formulation we derive the retrieval from the beginning, and we find that the most influential ingredient is the use of different optical constants for the two involved channel wavelengths (6.7 and 6.5 µm). The result of adapting the optical constant is an almost perfect match between UTH data measured by HIRS/2 on NOAA-14 and HIRS/3 on NOAA-15 on 1004 common days of operation. The method is applied to both UTH and UTHi. For each case retrieval coefficients are derived. We present a number of test applications, e.g. on computed brightness temperatures based on high-resolution radiosonde profiles, on the brightness temperatures measured by the satellites on the mentioned 1004 common days of operation. Further, we present time series of the occurrence frequency of high UTHi cases, and we show the overall probability distribution of UTHi. The two latter applications expose indications of moistening of the upper troposphere over the last 35 years. Finally, we discuss the significance of UTH. We state that UTH algorithms cannot be judged for their correctness or incorrectness, since there is no true UTH. Instead, UTH algorithms should fulfill a number of usefulness postulates, which we suggest and discuss.


2017 ◽  
Vol 10 (2) ◽  
pp. 681-693 ◽  
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. In the present study we explore the capability of the intercalibrated HIRS brightness temperature data at channel 12 (the HIRS water vapour channel; T12) to reproduce ice supersaturation in the upper troposphere during the period 1979–2014. Focus is given on the transition from the HIRS 2 to the HIRS 3 instrument in the year 1999, which involved a shift of the central wavelength in channel 12 from 6.7 to 6.5 µm. It is shown that this shift produced a discontinuity in the time series of low T12 values ( < 235 K) and associated cases of high upper-tropospheric humidity with respect to ice (UTHi  > 70 %) in the year 1999 which prevented us from maintaining a continuous, long-term time series of ice saturation throughout the whole record (1979–2014). We show that additional corrections are required to the low T12 values in order to bring HIRS 3 levels down to HIRS 2 levels. The new corrections are based on the cumulative distribution functions of T12 from NOAA 14 and 15 satellites (that is, when the transition from HIRS 2 to HIRS 3 occurred). By applying these corrections to the low T12 values we show that the discontinuity in the time series caused by the transition of HIRS 2 to HIRS 3 is not apparent anymore when it comes to calculating extreme UTHi cases. We come up with a new time series for values found at the low tail of the T12 distribution, which can be further exploited for analyses of ice saturation and supersaturation cases. The validity of the new method with respect to typical intercalibration methods such as regression-based methods is presented and discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Hong Shen ◽  
Longkun Yu ◽  
Xu Jing ◽  
Fengfu Tan

The turbulence moment of order m (μm) is defined as the refractive index structure constant Cn2 integrated over the whole path z with path-weighting function zm. Optical effects of atmospheric turbulence are directly related to turbulence moments. To evaluate the optical effects of atmospheric turbulence, it is necessary to measure the turbulence moment. It is well known that zero-order moments of turbulence (μ0) and five-thirds-order moments of turbulence (μ5/3), which correspond to the seeing and the isoplanatic angles, respectively, have been monitored as routine parameters in astronomical site testing. However, the direct measurement of second-order moments of turbulence (μ2) of the whole layer atmosphere has not been reported. Using a star as the light source, it has been found that μ2 can be measured through the covariance of the irradiance in two receiver apertures with suitable aperture size and aperture separation. Numerical results show that the theoretical error of this novel method is negligible in all the typical turbulence models. This method enabled us to monitor μ2 as a routine parameter in astronomical site testing, which is helpful to understand the characteristics of atmospheric turbulence better combined with μ0 and μ5/3.


2009 ◽  
Vol 48 (11) ◽  
pp. 2284-2294 ◽  
Author(s):  
Eui-Seok Chung ◽  
Brian J. Soden

Abstract Consistency of upper-tropospheric water vapor measurements from a variety of state-of-the-art instruments was assessed using collocated Geostationary Operational Environmental Satellite-8 (GOES-8) 6.7-μm brightness temperatures as a common benchmark during the Atmospheric Radiation Measurement Program (ARM) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX). To avoid uncertainties associated with the inversion of satellite-measured radiances into water vapor quantity, profiles of temperature and humidity observed from in situ, ground-based, and airborne instruments are inserted into a radiative transfer model to simulate the brightness temperature that the GOES-8 would have observed under those conditions (i.e., profile-to-radiance approach). Comparisons showed that Vaisala RS80-H radiosondes and Meteolabor Snow White chilled-mirror dewpoint hygrometers are systemically drier in the upper troposphere by ∼30%–40% relative to the GOES-8 measured upper-tropospheric humidity (UTH). By contrast, two ground-based Raman lidars (Cloud and Radiation Test Bed Raman lidar and scanning Raman lidar) and one airborne differential absorption lidar agree to within 10% of the GOES-8 measured UTH. These results indicate that upper-tropospheric water vapor can be monitored by these lidars and well-calibrated, stable geostationary satellites with an uncertainty of less than 10%, and that correction procedures are required to rectify the inherent deficiencies of humidity measurements in the upper troposphere from these radiosondes.


2017 ◽  
Vol 56 (7) ◽  
pp. 2035-2052 ◽  
Author(s):  
Thomas Garot ◽  
Hélène Brogniez ◽  
Renaud Fallourd ◽  
Nicolas Viltard

AbstractThe spatial and temporal distribution of upper-tropospheric humidity (UTH) observed by the Sounder for Atmospheric Profiling of Humidity in the Intertropics by Radiometry (SAPHIR)/Megha-Tropiques radiometer is analyzed over two subregions of the Indian Ocean during October–December over 2011–14. The properties of the distribution of UTH were studied with regard to the phase of the Madden–Julian oscillation (active or suppressed) and large-scale advection versus local production of moisture. To address these topics, first, a Lagrangian back-trajectory transport model was used to assess the role of the large-scale transport of air masses in the intraseasonal variability of UTH. Second, the temporal evolution of the distribution of UTH is analyzed using the computation of the higher moments of its probability distribution function (PDF) defined for each time step over the domain. The results highlight significant differences in the PDF of UTH depending on the phase of the MJO. The modeled trajectories ending in the considered domain originate from an area that strongly varies depending on the phases of the MJO: during the active phases, the air masses are spatially constrained within the tropical Indian Ocean domain, whereas a distinct upper-tropospheric (200–150 hPa) westerly flow guides the intraseasonal variability of UTH during the suppressed phases. Statistical relationships between the cloud fractions and the UTH PDF moments of are found to be very similar regardless of the convective activity. However, the occurrence of thin cirrus clouds is associated with a drying of the upper troposphere (enhanced during suppressed phases), whereas the occurrence of thick cirrus anvil clouds appears to be significantly related to a moistening of the upper troposphere.


2015 ◽  
Vol 15 (20) ◽  
pp. 29497-29521
Author(s):  
K. Gierens ◽  
K. Eleftheratos

Abstract. Theoretical derivations are given on the change of upper-tropospheric humidity (UTH) in a warming climate. Considered view is that the atmosphere, getting moister with increasing temperatures, will retain a constant relative humidity. In the present study we show that the upper-tropospheric humidity, a weighted mean over a relative humidity profile, will change in spite of constant relative humidity. The simple reason for this is that the weighting function, that defines UTH, changes in a moister atmosphere. Through analytical calculations using observations and through radiative transfer calculations we demonstrate that two quantities that define the weighting function of UTH can change: the water vapour scale height and the peak emission altitude. Applying these changes to real profiles of relative humidity shows that absolute UTH changes typically do not exceed 1 %. If larger changes would be observed they would be an indication of climatological changes of relative humidity. As such, an increase in UTH between 1980 and 2009 in the northern midlatitudes as shown by earlier studies using HIRS data, may be an indication of an increase in relative humidity as well.


2020 ◽  
Vol 634 ◽  
pp. A56 ◽  
Author(s):  
J. M. da Silva Santos ◽  
J. de la Cruz Rodríguez ◽  
J. Leenaarts ◽  
G. Chintzoglou ◽  
B. De Pontieu ◽  
...  

Context. Numerical simulations of the solar chromosphere predict a diverse thermal structure with both hot and cool regions. Observations of plage regions in particular typically feature broader and brighter chromospheric lines, which suggests that they are formed in hotter and denser conditions than in the quiet Sun, but also implies a nonthermal component whose source is unclear. Aims. We revisit the problem of the stratification of temperature and microturbulence in plage and the quiet Sun, now adding millimeter (mm) continuum observations provided by the Atacama Large Millimiter Array (ALMA) to inversions of near-ultraviolet Interface Region Imaging Spectrograph (IRIS) spectra as a powerful new diagnostic to disentangle the two parameters. We fit cool chromospheric holes and track the fast evolution of compact mm brightenings in the plage region. Methods. We use the STiC nonlocal thermodynamic equilibrium (NLTE) inversion code to simultaneously fit real ultraviolet and mm spectra in order to infer the thermodynamic parameters of the plasma. Results. We confirm the anticipated constraining potential of ALMA in NLTE inversions of the solar chromosphere. We find significant differences between the inversion results of IRIS data alone compared to the results of a combination with the mm data: the IRIS+ALMA inversions have increased contrast and temperature range, and tend to favor lower values of microturbulence (∼3−6 km s−1 in plage compared to ∼4−7 km s−1 from IRIS alone) in the chromosphere. The average brightness temperature of the plage region at 1.25 mm is 8500 K, but the ALMA maps also show much cooler (∼3000 K) and hotter (∼11 000 K) evolving features partially seen in other diagnostics. To explain the former, the inversions require the existence of localized low-temperature regions in the chromosphere where molecules such as CO could form. The hot features could sustain such high temperatures due to non-equilibrium hydrogen ionization effects in a shocked chromosphere – a scenario that is supported by low-frequency shock wave patterns found in the Mg II lines probed by IRIS.


1971 ◽  
Vol 49 (7) ◽  
pp. 1115-1132 ◽  
Author(s):  
M. J. Dignam ◽  
B. Rao ◽  
M. Moskovits ◽  
R. W. Stobie

This paper presents a detailed analysis of the application of ellipsometry to obtaining the optical spectra (principally infrared (i.r.)) of molecules adsorbed on reflecting surfaces. Both external and total internal reflections are considered and the conditions for optimum sensitivity examined. A new empirical quantity, the relative complex optical density, is defined which exhibits thin film properties well, particularly in the case of multiple reflection measurements. An explicit expression is derived for this density function (relating it to the optical constants of the media and other system parameters), which is both reasonably simple and correct to second order terms in the film thickness. It is shown that for thin films, no higher order terms need be included, but that in general the second order term must be retained. Various limiting cases are examined to gain insight into the optical behavior of thin films, and to the same end, model calculations performed for CCl4 physically adsorbed on Ag, Ni, Sb, and Ge. In relation to conventional reflection spectroscopy, ellipsometric spectroscopy is shown to have three major advantages: (1) in general, higher sensitivity to adsorbate properties; (2) very much lower sensitivity to absorption of radiation by the adjacent gas phase; (3) more information, permitting the optical constants and film thickness to be determined. Finally, the practicability of the technique is demonstrated by presenting preliminary results for CH3OH reversibly adsorbed on Ag, showing clearly the C—H stretching bands.


2017 ◽  
Vol 145 (5) ◽  
pp. 2027-2046 ◽  
Author(s):  
Jason A. Otkin ◽  
William E. Lewis ◽  
Allen J. Lenzen ◽  
Brian D. McNoldy ◽  
Sharanya J. Majumdar

Abstract In this study, cycled forecast experiments were performed to assess the ability of different cloud microphysics and cumulus parameterization schemes in the Hurricane Weather Research and Forecasting (HWRF) Model to accurately simulate the evolution of the cloud and moisture fields during the entire life cycle of Hurricane Edouard (2014). The forecast accuracy for each model configuration was evaluated through comparison of observed and simulated Geostationary Operational Environmental Satellite-13 (GOES-13) infrared brightness temperatures and satellite-derived tropical cyclone intensity estimates computed using the advanced Dvorak technique (ADT). Overall, the analysis revealed a large moist bias in the mid- and upper troposphere during the entire forecast period that was at least partially due to a moist bias in the initialization datasets but was also affected by the microphysics and cumulus parameterization schemes. Large differences occurred in the azimuthal brightness temperature distributions, with two of the microphysics schemes producing hurricane eyes that were much larger and clearer than observed, especially for later forecast hours. Comparisons to the forecast 10-m wind speeds showed reasonable agreement (correlations between 0.58 and 0.74) between the surface-based intensities and the ADT intensity estimates inferred via cloud patterns in the upper troposphere. It was also found that model configurations that had the smallest differences between the ADT and surface-based intensities had the most accurate track and intensity forecasts. Last, the cloud microphysics schemes had the largest impact on the forecast accuracy.


2016 ◽  
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. In the present study we explore the capability of the intercalibrated HIRS brightness temperature data at channel 12 (the HIRS water vapour channel; T12) to reproduce ice supersaturation in the upper troposphere during the period 1979–2014. Focus is given on the transition from the HIRS 2 to the HIRS 3 instrument in the year 1999, which involved a shift of the central wavelength in channel 12 from 6.7 µm to 6.5 µm. It is shown that this shift produced a discontinuity in the time series of low T12 values ( 70 %) in the year 1999 which prevented us from maintaining a continuous, long term time series of ice saturation throughout the whole record (1979–2014). We present that additional corrections are required to the low T12 values in order to bring HIRS 3 levels down to HIRS 2 levels. The new corrections are based on the cumulative distribution functions of T12 from NOAA 14 and 15 satellites (that is, when the transition from HIRS 2 to HIRS 3 occurred). By applying these corrections to the low T12 values we show that the discontinuity in the time series caused by the transition of HIRS 2 to HIRS 3 is not apparent anymore when it comes to calculate extreme UTHi cases. We come up with a new time series for values found at the low tail of the T12 distribution, which can be further exploited for analyses of ice saturation and supersaturation cases. The validity of the new method with respect to typical intercalibration methods such as regression-based methods is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document