scholarly journals AEROCOM/AEROSAT AAOT & SSA study, part I: evaluation and intercomparison of satellite measurements

2020 ◽  
Author(s):  
Nick Schutgens ◽  
Oleg Dubovik ◽  
Otto Hasekamp ◽  
Omar Torres ◽  
Hiren Jethva ◽  
...  

Abstract. Global measurements of absorptive aerosol optical depth (AAOD) are scarce and mostly provided by the ground network AERONET (AErosol RObotic NETwork). In recent years, several satellite products of AAOD have appeared. This study's primary aim is to establish the usefulness of these datasets for AEROCOM (AEROsol Comparisons between Observations and Models) model evaluation with a focus on the years 2006, 2008 and 2010. The satellite products are super-observations consisting of 1° × 1° × 30min aggregated retrievals. This study consist of two parts: 1) an assessment of satellite datasets; 2) their application to the evaluation of AEROCOM models. The current paper describes the first part and details an evaluation with AERONET observations from the sparse AERONET network as well as a global intercomparison of satellite datasets, with a focus on how minimum AOD (Aerosol Optical Depth) thresholds and temporal averaging may improve agreement. All satellite datasets are shown to have reasonable skill for AAOD (3 out of 4 datasets show correlations with AERONET in excess of 0.6) but less skill for SSA (Single Scattering Albedo; only 1 out of 4 datasets shows correlations with AERONET in excess of 0.6). In comparison, satellite AOD shows correlations from 0.72 to 0.88 against the same AERONET dataset. We do show that performance vs. AERONET and satellite agreements for SSA significantly improve at higher AOD. Temporal averaging also improves agreements between satellite datasets. Nevertheless multi-annual averages still show systematic differences, even at high AOD. In particular, we show that two POLDER products appear to have a systematic SSA difference over land of about 0.04, independent of AOD. Identifying the cause of this bias offers the possibility of substantially improving current datasets. We also provide evidence that suggests that evaluation with AERONET observations leads to an underestimate of true biases in satellite SSA. In the second part of this study we show that, notwithstanding these biases in satellite AAOD and SSA, the datasets allow meaningful evaluation of AEROCOM models.

2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2012 ◽  
Vol 5 (3) ◽  
pp. 569-579 ◽  
Author(s):  
V. Estellés ◽  
M. Campanelli ◽  
M. P. Utrillas ◽  
F. Expósito ◽  
J. A. Martínez-Lozano

Abstract. SKYNET is an international research network of ground based sky – sunphotometers for the observation and monitoring of columnar aerosol properties. The algorithm developed by SKYNET is called SKYRAD.pack, and it is used on Prede instruments only. In this study, we have modified the SKYRAD.pack software in order to adapt it to Cimel sunphotometers. A one month database of Cimel data obtained at Burjassot (Valencia, Spain) has been processed with this program and the obtained inversion products have been compared with AERONET retrievals. In general, the differences found were consistent with the individual error assessments for both algorithms. Although the aerosol optical depth compared well for any aerosol burden situation (rmsd of 0.002–0.013 for all wavelengths), inversion products such as the single scattering albedo, refractive index and asymmetry parameter compared better for higher turbidity situations. The comparison performed for cases with an aerosol optical depth at 440 nm over 0.2 showed rms differences of 0.025–0.049 for single scattering albedo, 0.005–0.034 for the real part of refractive index, 0.004–0.007 for the imaginary part of the refractive index and 0.006–0.009 for the asymmetry parameter. With respect to the volume distributions, the comparison also showed a good agreement for high turbidity cases (mainly within the 0.01–7 μm interval) although the already known discrepancy in the extremes of the distribution was still found in 40% of the cases, in spite of eliminating data and instrumental differences present in previous studies.


2010 ◽  
Vol 10 (2) ◽  
pp. 331-340 ◽  
Author(s):  
I. Ialongo ◽  
V. Buchard ◽  
C. Brogniez ◽  
G. R. Casale ◽  
A. M. Siani

Abstract. The aerosol Single Scattering Albedo (SSA) and Absorbing Aerosol Optical Depth (AAOD) at 320.1 nm are derived at Rome site by the comparison between Brewer and modelled spectra. The UVSPEC radiative transfer model is used to calculate the UV irradiances for different SSA values, taking into account as input data total ozone and Aerosol Optical Depth (AOD) obtained from Brewer spectral measurements. The accuracy in determining SSA depends on the aerosol amount and on Solar Zenith Angle (SZA) value: SSA uncertainty increases when AOD and SZA decrease. The monthly mean values of SSA and AAOD during the period January 2005–June 2008 are analysed, showing a monthly and seasonal variability. It is found that the SSA and AAOD averages are 0.80±0.08 and 0.056±0.028, respectively. AAOD retrievals are also used to quantify the error in the Ozone Monitoring Instrument (OMI) surface UV products due to absorbing aerosols, not included in the current OMI UV algorithm. OMI and Brewer UV irradiances at 324.1 nm and Erythemal Dose Rates (EDRs) under clear sky conditions, are compared as a function of AAOD. Three methods are considered to investigate on the applicability of an absorbing aerosol correction on OMI UV data at Rome site. Depending on the correction methodology, the bias value decreases from 18% to 2% for spectral irradiance at 324.1 nm and from 25% to 8% for EDR.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1226
Author(s):  
Lina Xun ◽  
Hui Lu ◽  
Congcong Qian ◽  
Yong Zhang ◽  
Shanshan Lyu ◽  
...  

We use two cloud screening methods—the clustering method and the multiplet method—to process the measurements of a sun photometer from March 2020 to April 2021 in Shouxian. The aerosol optical depth (AOD) and Angström parameters α and β are retrieved; variation characteristics and single scattering albedo are studied. The results show that: (1) The fitting coefficient of AOD retrieved by the two methods is 0.921, and the changing trend is consistent. The clustering method has fewer effective data points and days, reducing the overall average of AOD by 0.0542 (500 nm). (2) Diurnal variation of AOD can be divided into flat type, convex type, and concave type. Concave type and convex type occurred the most frequently, whereas flat type the least. (3) During observation, the overall average of AOD is 0.48, which is relatively high. Among them, AOD had a winter maximum (0.70), autumn and spring next (0.54 and 0.40), and a summer minimum (0.26). The variation trend of AOD and β is highly consistent, and the monthly mean of α is between 0.69 and 1.61, concerning mainly continental and urban aerosols. (4) Compared with others, the single scattering albedo in Shouxian is higher, reflecting strong scattering and weak aerosol absorption.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 446 ◽  
Author(s):  
Michał T. Chiliński ◽  
Krzysztof M. Markowicz ◽  
Olga Zawadzka ◽  
Iwona S. Stachlewska ◽  
Justyna Lisok ◽  
...  

The impact of absorbing aerosols on climate is complex, with their potential positive or negative forcing, depending on many factors, including their height distribution and reflective properties of the underlying background. Measurement data is very limited, due to insufficient remote sensing methods dedicated to the retrieval of their vertical distribution. Columnar values of absorbing aerosol optical depth (AAOD) and single scattering albedo (SSA) are retrieved by the Aerosol Robotic Network (AERONET). However, the number of available results is low due to sky condition and aerosol optical depth (AOD) limitation. Presented research describes results of field campaigns in Strzyżów (South-East Poland, Eastern Europe) dedicated to the comparison of the absorption coefficient and SSA measurements performed with on-ground in-situ devices (aethalomter, nephelometer), small unmanned aerial system (UAS) carrying micro-aethalometer, as well as with lidar/ceilometer. An important aspect is the comparison of measurement results with those delivered by AERONET. Correlation of absorption to scattering coefficients measured on ground (0.79) and correlation of extinction on ground to AOD measured by AERONET (0.77) was visibly higher than correlation between AOD and AAOD retrieved by AERONET (0.56). Columnar SSA was weakly correlated with ground SSA (higher values of columnar SSA), which were mainly explained by hygroscopic effects, increasing scattering coefficient in ambient (wet conditions), and partly high uncertainty of SSA retrieval. AAOD derived with the use of profiles from UAS up to PBL height, was estimated to contribute in average to 37% of the total AAOD. A method of AAOD estimation, in the whole troposphere, with use of measured vertical profiles of absorption coefficient and extinction coefficient profiles from lidars was proposed. AAOD measured with this method has poor correlation with AERONET data, however for some measurements, within PBL, AAOD was higher than reported by AERONET, suggesting potential underestimation in photometric measurement under particular conditions. Correlation of absorption coefficient in profile to on ground measurements decrease with altitude. Measurements of SSA from drones agree well with ground measurements and are lower than results from AERONET, which suggests a larger contribution of absorbing aerosols. As an alternative for AAOD estimation in case of lack of AERONET AAOD data simple models are proposed, which base on AOD scaling with SSA measured with different methods. Proposed solution increase potential of absorption coefficient measurements in vertical profiles and columns of the atmosphere. Presented solutions make measurements of absorption coefficients in vertical profiles more affordable and allow rough estimation of columnar values for the whole atmosphere.


2013 ◽  
Vol 6 (2) ◽  
pp. 3317-3338 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. Aerosol optical depth, Ångström exponent, single scattering albedo, and polarized phase function have been retrieved from polarized sun-photometer measurements for atmosphere of Zanjan (36.70° N, 48.51° E, and 1800 m a.m.s.l.) from January 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e. 60°), are strongly correlated with the Ångström exponent. The latter one has a meaningful variations respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation respect to atmospheric aerosol optical depth and single scattering albedo. Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles.


2020 ◽  
Author(s):  
Rei Kudo ◽  
Henri Diémoz ◽  
Victor Estellés ◽  
Monica Campanelli ◽  
Masahiro Momoi ◽  
...  

Abstract. The Prede POM sky radiometer is a filter radiometer deployed worldwide in the SKYNET international network. A new method called, Skyrad pack MRI version 2 (MRI v2), is here presented, to retrieve aerosol properties (size distribution, real and imaginary parts of the refractive index, single-scattering albedo, asymmetry factor, lidar ratio, and linear depolarization ratio), and water vapor and ozone column concentrations from the sky radiometer measurements. MRI v2 overcomes two limitations of previous methods (Skyrad pack versions 4.2 and 5, and MRI version 1). One is the use of all the wavelengths of 315, 340, 380, 400, 500, 675, 870, 940, 1020, 1627, and 2200 nm, if available from the sky radiometers, for example, in POM-02 models. The previous methods cannot use the wavelengths of 315, 940, 1627, and 2200 nm. This enables us to provide improved estimates of the aerosol optical properties, covering almost all the wavelengths of solar radiation. The other is the use of measurements in the principal plane geometry in addition to the solar almucantar plane geometry that is used in the previous versions. The measurements in the principal plane are regularly performed, however they are currently not exploited despite being useful in the case of small solar zenith angles, when the scattering angle distribution for almucantars becomes too small to yield useful information. Moreover, in the inversion algorithm, MRI v2 optimizes the smoothness constraints of the spectral dependencies of the refractive index and size distribution, and changes the contribution of the diffuse radiances to the cost function according to the aerosol optical depth. These overcome issues with the estimation of the size distribution and single-scattering albedo in the Skyrad pack version 4.2. The scattering model used here allows for non-spherical particles, improving results for mineral dust and permitting to evaluate the depolarization ratio. An assessment of the retrieval uncertainties using synthetic measurement show that best performance is obtained when the aerosol optical depths is larger than 0.2 at 500 nm. Improvements over the Skyrad pack versions 4.2 and 5 are obtained for the retrieved size distribution, imaginary part of the refractive index, single-scattering albedo, and lidar ratio at Tsukuba, Japan, while yielding comparable retrievals of the aerosol optical depth, real part of the refractive index, and asymmetry factor. A radiative closure study using surface solar irradiances from Baseline Surface Radiation Network and the parameters retrieved from MRI v2 showed consistency, with a positive bias of the simulated global irradiance, about +24 Wm−2 (+3 %). Furthermore, the MRI v2 retrievals of the refractive index, single-scattering albedo, asymmetry factor, and size distribution have been found in agreement with integrated profiles of aircraft in-situ measurements of two Saharan dust events at the Cape Verde archipelago, during the SAVEX-D 2015 field campaign.


2013 ◽  
Author(s):  
E. Rodríguez ◽  
P. Kolmonen ◽  
A.-M. Sundström ◽  
L. Sogacheva ◽  
T. Virtanen ◽  
...  

2002 ◽  
Author(s):  
Alkiviadis F. Bais ◽  
Andreas Kazantzidis ◽  
Stylianos Kazadzis ◽  
Dimitris S. Balis ◽  
Christos S. Zerefos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document